R&D, innovation, and productivity

Bronwyn H. Hall University of California at Berkeley, NBER, IFS London, NIESR London, and MPI Munich

R&D, innovation and productivity

Note the broader topic, given the importance of non-R&D based innovation for productivity

- Some facts about R&D/innovation
- Framework for interpreting results
- Brief summary of what we know
- Policies toward both R&D and innovation
 - How they differ
 - Are they effective?

R&D and innovation -> productivity

- What are the mechanisms connecting R&D and innovation with aggregate productivity?
 - Improvements within existing firms
 - Creation of new goods & services, leading to increased demand for firm's products
 - Process and organizational innovation leading to efficiency gains in production
 - Entry of more efficient firms
 - Entry of firms on technology frontier
 - Exit of less efficient firms

Measuring innovative activity

- Large literature using R&D flows or stocks as proxies for innovation input
 - ▶ Hall, Mairesse, Mohnen 2010 survey, inter alia
- Smaller literature using patents as a proxy for intermediate innovation output
- Both measures have well-known weaknesses, especially outside the manufacturing sector
- Recently more direct measures are available, thanks to CIS firm surveys

R&D vs innovation

- Not all innovative firms do formal R&D
- R&D-doing firms do not innovate every year (or even every 3 years)

Italian firms 1995-2006					
	Non-innovator	Innovator			
Does not do R&D	30.9%	34.8%			
Does R&D	6.2%	34.3%			

- Especially true in the service sector:
 - Many innovations are not technological, such as new ways of organizing information flow, new designs, etc.
 - Many innovations rely on purchased technology, such as adoption of computer-aided processes, CRM software, etc.

R&D vs innovation spending

 Service sector firms spend more on new equipment, training, and marketing and less on R&D.

The shares shown are for firms that have some form of innovation spending reported.

What do we know?

A great deal about

- Contribution of R&D and innovation to firm-level productivity
- Contribution of R&D and innovation to the productivity of other industries and countries

Something about

- Contribution of entry of more efficient and exit of less efficient firms to aggregate productivity growth
- Contribution of R&D to quality improvement and therefore productivity growth (via lower prices)

Much less about

- Contribution of R&D and innovation to welfare and to poorly measured but important outputs (health, environmental quality, etc)
- Aggregate growth implications in detail
- Distribution of the benefits from gains in productivity

Interpretive framework

- Innovation-productivity regressions use revenue productivity data
 - Include coarse sectoral dummies
 - Relative within-sector price changes not accounted for
 - Quality change not generally accounted for
- Omitting price change at the firm level can be helpful, as it allows estimation of the contribution of innovation to firm demand as well as efficiency
- Hall (2011) analysis of the implications of distinguishing productivity from revenue productivity

Productivity-innovation model

- Innovation affects
 - price the firm can charge (product)
 - quantity the firm produces from a given set of inputs (process)
- Output measure -- revenue (sales or turnover)
 - ▶ joint response of price*quantity to product and process innovation
- Labor demand responds both to increased efficiency (negatively) and to increased output (positively, due to output increases)
- Assume the following:
 - Imperfect competition (positive markup)
 - Downward sloping demand with constant elasticity

Conclusions from analysis

- Product innovation unambiguously increases revenue productivity and labor demand
- Process innovation will increase revenue productivity and labor demand only if demand is elastic; even in this case impact is dampened unless there is perfect competition (price taking)
- Empirical results largely confirm these predictions
 - ▶ Hall (2011), Nordic Economic Policy Review; Hall and Mohnen (2013), Eurasian Business Review
 - Product innovation and share of innovative sales strongly positive for both output and labor demand
 - Process innovation much less so, sometimes negative
 - ▶ R&D (if present) a better predictor, since better measured.

Spillovers

- Principle argument for R&D/innovation policy is the presence of unpriced spillovers to firms that are adjacent in industry, technology, or geographically.
- Lots of evidence that this is true (e.g., Kao et al 1999, Keller 1998, 2001, Coe and Helpman 1995). Some nuances:
 - For foreign R&D, export/import channel is important (Macgarvie 2004)
 - Spillovers from foreign R&D more important for smaller open economies than for countries like US, Japan, and Germany (Park 1995, van Pottelsberghe 1997)
 - Domestic spillovers usually larger than those from other countries (Branstetter 2001, Peri 2004)
 - Absorptive capacity of recipient country is important for making use of R&D spillovers (Guellec and van Pottelsberghe 2001)
 - Typical social rates of return are quite large, but very imprecisely determined

R&D and innovation policy

- Two different emphases
 - Inducing spending on R&D will be successful using fairly direct measures
 - Success in innovation depends to a greater extent on multiple factors in the environment, outside the direct innovation orbit

R&D policy

- Main policies (widely used)
 - Property rights (at the cost of restricted output)
 - Subsidies (often targetted; high administration costs)
 - Tax credits of various kinds
- Brief summary of evidence
 - ▶ IP important in some (but definitely not all) sectors
 - Subsidies have a mixed record, but mostly positive in the sense that they increase R&D spending by the firm
 - ▶ R&D tax credits unambiguously increase R&D spending, usually with price elasticity around unity
- With the exception of some subsidy programs, these policies target the private rate of return, not the social

R&D and innovation policy

- Some governments have turned to IP or patent boxes in order to broaden supported activities.
- However, R&D tax credits strongly preferred to patent boxes for a number of reasons:
 - Directly related to cost of activity (firm decisions)
 - Relative size of non-R&E budget does not affect credit (depending on box design)
 - No incentive to choose projects with high non-R&E expenses (depending on box design)
 - No tax subsidy for patent trolling
 - No incentive to use zombie patents to reduce taxes
 - Less arbitrage across firms possible doesn't matter who does the R&D
 - Lower audit cost

Broader policy context

- Innovative activity (including diffusion) affected by many things, not all of which are viewed as susceptible to "innovation policy"
 - ▶ Timely bankruptcy procedures and contract enforcement
 - Entry costs and regulation
 - Product market regulation
 - Labor market regulation startups need flexibility
 - Corollary: lifetime training availibility
 - Political resistance from affected firms and workers
- Data on these factors now available, thanks to OECD and IMF

Institutions and innovation

- ▶ Barbosa and Faria (2011) look at product/process innovation 2002-2004 in 10 European countries
 - Product and labor market regulation affects innovation intensity negatively
 - More developed credit markets foster innovation
 - Strengthening of intellectual property rights does not seem to stimulate innovation
- Ciriaci et al. (2016) − Above a threshold of PMR, EPL is negative for R&D location.

Product market regulation in 2013 and threshold value for EPL impact (EU 28)

- PMR measure: I) state control; 2) barriers to trade and investment; 3) barriers to entrepreneurship
- EPL measure: costs of firing and of hiring on fixed term or temp contracts

Allocative efficiency & regulation (AE)

- Can resources (capital and workers) move to their most productive use?
- Andrews & Cingano (2014) controls for endogeneity of policies
 - Higher barriers to entry and creditor-friendly bankruptcy legislation tend to lower AE
 - Tighter employment protection lowers the efficiency of employment allocation
 - Stringent product & labor market regulation, bankruptcy legislation more disruptive to AE in innovative sectors

Cette, Lopez, Mairesse (2016)

- Industry-country study for 14 OECD countries, 18 industries, both mfg and services
 - Impact of non-mfg regulation, harmonized tariffs and EPL on TFP is negative
 - Finland: both nonmanufacuring regulation and EPL depress MFP

Institutions and catch-up

- Andrews, Criscuolo, and Gal (2015) study gap between firms on tech frontier and other firms in OECD countries
- Productivity gaps between national frontier and global frontier firms smaller in countries where
 - education systems are of higher quality;
 - product market regulations are less cumbersome;
 - businesses and universities collaborate intensively;
 - markets for risk capital are more developed.
 - Mixed results on patent strength: lower gap in R&D intensive sectors, but not in more dynamic sectors
- Country-industry results:
 - Lower PMR associated with higher MFP growth for firms in industries with high firm turnover rates.
 - Lower EPL associated with higher MFP growth for firms in industries with high job turnover rates,
 - Higher R&D collaboration between universities and firms is associated with higher MFP growth for laggard firms in K-intensive industries

Cross-country gains to aggregate labour productivity from reforms to best practice level of four policy variables that partly explain cross-country industry differences in the size of national frontier (NF) firms, relative to global frontier (GF) benchmark. Source: Andrews et al. (2015)

Finland's position is mixed, relative to global frontier firms (lower is better)

Tentative suggestions for Finland

"Conclusions" would be too strong a word – these are topics for discussion

- Framework conditions fairly favorable for innovation, could be improved - appear to reduce level of TFP by about 5%, after controling for other inputs
 - PMR (retail, transport, construction, according to OECD 2016 report)
 - ▶ EPL (or just labor costs in general?)
- Publicly funded R&D as a share of GDP surprisingly low
 - Why is the takeup of the R&D tax credit so low?

Thank you for listening (a bit more on aggregate effects and CDM results below)

Aggregation

- How does individual firm relationship aggregate up to macro-economy?
 - productivity gains in existing firms
 - exit and entry
- Aghion et al (2009); Gorodnichenko et al (2010)
 - Competition and entry encourages innovation unless the sector is very far behind
- Djankov (2010) survey cross country
 - stronger entry regulation and/or higher entry costs associated with fewer new firms, greater existing firm size and growth, lower TFP, lower investment, and higher profits

Entry and exit

- Olley & Pakes, Haltiwanger & co-authors have developed decompositions that are useful
- ▶ Foster, Haltiwanger, and Syverson (2008) US data
 - Distinguish between revenue and quantity, and include exit & entry
 - Revenue productivity understates contribution of entrants to real productivity growth because entrants generally have lower prices
 - Demand variation is a more important determinant of firm survival than efficiency in production (consistent with productivity impacts)

Future work?

- Full set of links between innovation, competition, exit/entry, and productivity growth not yet explored
- Bartelsman et al. (2010): Size-productivity more highly correlated within industry if regulation is "efficient"
 - Evidence on Eastern European convergence
 - Useful approach to the evaluation of regulatory effects without strong assumptions
- Similar analysis could assess the economy-wide innovation impacts

Innovation surveys contain.....

- Data on innovation:
 - Product or process new to firm/market (yes/no)
 - Share of sales during past 3 years from new products
 - More recent surveys have expenditures on various kinds of innovation investments
- Data on productivity and employment:
 - Usually sales per worker (labor productivity)
 - Sometimes TFP (adjusted for changes in capital)
 - Issues arising from deflation and level of aggregation
 - of goods, and of enterprises

More information in Mairesse and Mohnen (2010)

What do the data say about the relationship?

- Results from a large collection of papers that used the CDM model for estimation (Crepon Duguet Mairesse 1998):
 - Innovation survey data reveals that some non-R&D firms innovate and some R&D firms do not innovate during the relevant period
 - Data is usually cross-sectional, so possible simultaneity between R&D, innovation, and productivity (productivity sometimes measured a year later)
 - ▶ Sequential model: R&D→innovation→productivity

The CDM model

- The determinants of R&D choice: whether to do it and how much to do (generalized Tobit)
- Innovation production function with innovation variables as functions of predicted R&D intensity (regression or probits)
- 3. Production function including the predicted innovation outcomes to measure their contribution to the firm's productivity.

Effectively a triangular simultaneous equations model, but nonlinear. (bootstrap s.e.s if sequentially estimated)

CDM model applied to CIS data

- Estimated for 20+ countries
- Confirms high rates of return to R&D found in earlier studies
- Like patents, innovation output statistics are much more variable ("noisier") than R&D,
 - ▶ R&D tends to predict productivity better, when available
- Next few slides results summary
 - regressions of individual firm TFP on innovation
- Sources: Hall (2011), Nordic Economic Policy Review and Hall and Mohnen (2013), Eurasian Business Review

Productivity-innovation relationship in TFP levels

		Elasticity with	Process		
Sample	Time period	respect to innov	innovation		
		sales share	dummy		
Chilean mfg sector	1995-1998	0.18 (0.11)*			
Chinese R&D-doing mfg sector	1995-1999	0.035 (0.002)***			
Dutch mfg sector	1994-1996	0.13 (0.03)***	-1.3 (0.5)***		
Finnish mfg sector	1994-1996	0.09 (0.06)	-0.03 (0.06)		
French mfg sector	1986-1990	0.07 (0.02)***			
German K-intensive mfg sector	1998-2000	0.27 (0.10)***	-0.14 (0.07)**		
Norwegian mfg sector	1995-1997	0.26 (0.06)***	0.01 (0.04)		
Swedish K-intensive mfg sector	1998-2000	0.29 (0.08)***	-0.03 (0.12)		
Swedish mfg sector	1994-1996	0.15 (0.04)***	-0.15 (0.04)***		
Swedish mfg sector	1996-1998	0.12 (0.04)***	-0.07 (0.03)***		
Swedish service sector	1996-1998	0.09 (0.05)*	-0.07 (0.05)		
Innovative sales share and process innovation included separately in the production function:					
French Hi-tech mfg	1998-2000	0.23 (0.15)*	0.06 (0.02)***		
French Low-tech mfg	1998-2000	0.05 (0.02)***	0.10 (0.04)***		
Irish firms	2004-2008	0.11 (0.02)***	0.33 (0.08)***		

TFP levels on innov sales share

- Robustly positive, supports the view that product innovation shifts the firm's demand curve out and increases revenue
 - ▶ Elasticities range from 0.04 to 0.29 with a typical standard error of 0.03
 - R&D-intensive and hi-tech firms have higher elasticities (consistent with equalized rates of return across sectors)
- Coefficient of process innovation dummy usually insignificant or negative, suggesting either inelastic demand and/or substantial measurement error in the innovation variables

Productivity-innovation using dummies

Sample	Time period	Product innovation	Process innovation		
		dummy	dummy		
Argentinian mfg sector	1998-2000	-0.22 (0.15)			
Brazilian mfg sector	1998-2000	0.22 (0.04***			
Estonian mfg sector	1998-2000	0.17 (0.08)**	-0.03 (0.09)		
Estonian mfg sector	2002-2004	0.03 (0.04)	0.18 (0.05)***		
French mfg sector	1998-2000	0.08 (0.03)**			
French mfg sector	1998-2000	0.06 (0.02)***	0.07 (0.03)**		
French mfg sector	1998-2000	0.05 (0.09)	0.41 (0.12)***		
French mfg sector	2002-2004	-0.08 (0.13)	0.45 (0.16)***		
French service sector	2002-2004	0.27 (0.52)	0.27 (0.45)		
German mfg sector	1998-2000	-0.05 (0.03)	0.02 (0.05)		
Italian mfg sector	1995-2003	0.69 (0.15)***	-0.43 (0.13)***		
Italian mfg sector SMEs	1995-2003	0.60 (0.09)***	0.19 (0.27)		
Mexican mfg sector	1998-2000	0.31 (0.09)**			
Spanish mfg sector	2002-2004	0.16 (0.05)***			
Spanish mfg sector	1998-2000	0.18 (0.03)***	-0.04 (0.04)		
Swiss mfg sector	1998-2000	0.06 (0.02)***			
UK mfg sector	1998-2000	0.06 (0.02)***	0.03 (0.04)		
Innovative sales share and process innovation included separately in the production function:					
Irish firms	2004-2008	0.45 (0.08)***	0.33 (0.08)***		

Productivity-innovation using dummies

Sample	Time period	Product innovation	Process innovation
		dummy	dummy
German mfg sector	2006-2008	0.04 (0.02)*	
German mfg sector	2006-2008		0.09 (0.05)**
German service sector	2006-2008	0.21 (0.07)***	
German service sector	2006-2008		0.16 (0.06)***
Irish mfg sector	2006-2008	0.18 (0.22)	
Irish mfg sector	2006-2008		0.24 (0.24)
Irish service sector	2006-2008	0.51 (0.30)*	
Irish service sector	2006-2008		0.19 (0.28)
UK mfg sector	2006-2008	0.05 (0.02)***	
UK mfg sector	2006-2008		0.07 (0.02)***
UK service sector	2006-2008	0.07 (0.03)**	
UK service sector	2006-2008		0.04 (0.02)*

Source: Peters et al. 2014

TFP level results with dummies

- Product dummy supports innovation sales share result, although much noisier.
- There is substantial correlation between product and process innovation, especially when they are instrumented by R&D and other firm characteristics.
 - Without instruments, innovation dummies frequently do not enter productivity equation at all.

NB: Correlated measurement error can lead to bias in both coefficients (upward for the better measured one and downward for the other) — see Hall (2004)

http://bronwynhall.com/papers/BHH04_measerr.pdf

Employment impacts

Harrison et al (IJIO 2014) and Hall, Lotti, Mairesse (ICC 2008) - decompose employment change as a function of process and product innovation, using coefficients from a regression of employment growth on innovative sales growth and process innovation:

Growth = industry productivity trend in old products

- + growth due to process innovation in old products
- + growth due to output growth of old products
 - + growth due to product innovation (net of substitution away from old products)
- A reinterpretation of the labor productivity equation to focus on employment

Summary

- Elasticity wrt innovative sales centers on (0.09, 0.13)
 - higher for high tech and knowledge-intensive firms
 - Lower on average for low tech and developing countries, but also more variable
- With product innovation included, process innovation often negative or zero
- Without product innovation, process innovation positive for productivity
- When not instrumented, little impact of innovation variables in production function (unlike R&D)
 - ▶ See Mairesse & Mohnen (2005), Hall et al. (2012)
- Both process and product innovation are positive on average for firm employment growth in manufacturing,
 - at least during the late 1990s in Europe
- What if we had spending on innovation (rather than just R&D, a component of innovation spending)?

UK evidence

- Definition of IS: internal & external R&D; new equip & software; design expense; training; acq of patents & knowhow; marketing all associated with intro of new products or processes
- Out of 10,500 firm obs 2001-2006
 - ▶ 6500 have some form of innovation spending (IS)
 - 3400 have internal R&D
 - R&D firms: median IS is 5 times median R&D
- Compared to R&D:
 - IS more strongly associated with info from suppliers and innovation to meet environmental or H&S stds; less strongly with exports, collaboration, and info from customers (that is, more process than product)
 - ▶ IS is a better predictor of innovation probability
 - Doubling IS has the same impact on TFP as doubling R&D increase of 0.05

Discussion

- R&D spending remains a better predictor of productivity improvement at the firm level
- Innovation dummies may be too noisy a measure to be very useful.
 - Share of sales due to new products is more informative.
 - What measure would be useful (and reportable) for process innovation?
- Further exploration with innovation investment (instead of R&D) is warranted