

Productivity dispersion and growth

The Role of R&D in Fostering Economic Performance: Lessons from Research and Implications for Finland", OECD & MEAE, 12.2016

Mika Maliranta, University of Jyväskylä & ETLA

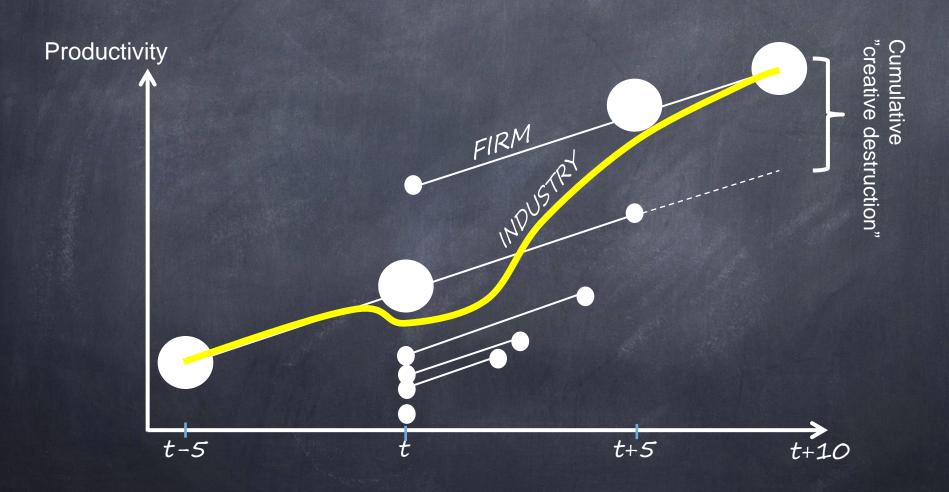

Conclusions

- Productivity dispersion between firms has increased within industries
 - Associated with increase in wage dispersion
- Not because less cleansing through creative destruction (it has increased)
- Slight indication of decrease in "convergence" between low and high productivity firms (& labor mobility has remained strong in Finland)
- Increased productivity dispersion may reflect technological change and innovation activity

Two perspectives on productivity dispersion

- Static": an indication of inefficiency among firms.
 - Problems of low productivity firm in catching up
 - Increase in dispersion is bad for aggregate productivity
- "Dynamic": heterogeneity is a feature of innovation activities and "creative destruction"
 - Increase in dispersion may be a sign of increased innovation among firms and increased aggregate productivity through "creative destruction"

Productivity and wage dispersion between firms (within 17 Business sector industries) in Finland, std(ln(LP)) &


—Productivity dispersion (scale on left) —Wage dispersion (scale on right)

Widening gap between low and high productivity firms

- Less cleansing of low productivity firms through creative destruction?
- Less diffusion of knowledge from high to low productivity firms?
- More heterogeneity through (drastic) innovations?

Productivity growth within firms & Creative Destruction

Productivity growth in industry, within firms & creative destruction

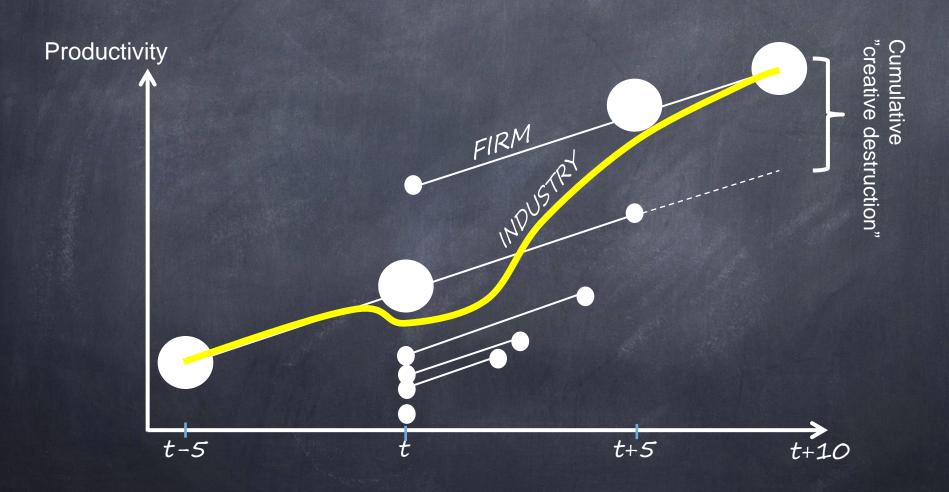
Method: Measurement of productivity growth within firms and between firms

"Non-log-version" of productivity decomposition (e.g. Böckerman-Maliranta 2012)

$$\frac{\Phi_{1} - \Phi_{0}}{\bar{\Phi}} = \sum\nolimits_{i \in \Omega_{S}} \overline{s}_{i}^{\, stayer} \, \frac{\Delta \varphi_{i}}{\bar{\varphi}_{i}} + \sum\nolimits_{i \in \Omega_{S}} \overline{s}_{i}^{\, stayer} \, \frac{\Delta \varphi_{i}}{\bar{\varphi}_{i}} \left(\frac{\bar{\varphi}_{i}}{\bar{\Phi}} - 1 \right) + \sum\nolimits_{i \in \Omega_{S}} \frac{\bar{\varphi}_{i}}{\bar{\Phi}} \cdot \Delta s_{i}^{\, stayer} + S_{1}^{\, entrant} \, \frac{\left(\Phi_{1}^{\, entrant} - \Phi_{1}^{\, stayer} \right)}{\bar{\Phi}} + S_{0}^{\, exit} \, \frac{\left(\Phi_{0}^{\, stayer} - \Phi_{0}^{\, exit} \right)}{\bar{\Phi}} + S_{0}^{\, exit} \, \frac{\left(\Phi_{0}^{\, stayer} - \Phi_{0}^{\, exit} \right)}{\bar{\Phi}} + S_{0}^{\, exit} \, \frac{\left(\Phi_{0}^{\, stayer} - \Phi_{0}^{\, exit} \right)}{\bar{\Phi}} + S_{0}^{\, exit} \, \frac{\left(\Phi_{0}^{\, stayer} - \Phi_{0}^{\, exit} \right)}{\bar{\Phi}} + S_{0}^{\, exit} \, \frac{\left(\Phi_{0}^{\, stayer} - \Phi_{0}^{\, exit} \right)}{\bar{\Phi}} + S_{0}^{\, exit} \, \frac{\left(\Phi_{0}^{\, stayer} - \Phi_{0}^{\, exit} \right)}{\bar{\Phi}} + S_{0}^{\, exit} \, \frac{\left(\Phi_{0}^{\, stayer} - \Phi_{0}^{\, exit} \right)}{\bar{\Phi}} + S_{0}^{\, exit} \, \frac{\left(\Phi_{0}^{\, stayer} - \Phi_{0}^{\, exit} \right)}{\bar{\Phi}} + S_{0}^{\, exit} \, \frac{\left(\Phi_{0}^{\, stayer} - \Phi_{0}^{\, exit} \right)}{\bar{\Phi}} + S_{0}^{\, exit} \, \frac{\left(\Phi_{0}^{\, stayer} - \Phi_{0}^{\, exit} \right)}{\bar{\Phi}} + S_{0}^{\, exit} \, \frac{\left(\Phi_{0}^{\, stayer} - \Phi_{0}^{\, exit} \right)}{\bar{\Phi}} + S_{0}^{\, exit} \, \frac{\left(\Phi_{0}^{\, stayer} - \Phi_{0}^{\, exit} \right)}{\bar{\Phi}} + S_{0}^{\, exit} \, \frac{\left(\Phi_{0}^{\, stayer} - \Phi_{0}^{\, exit} \right)}{\bar{\Phi}} + S_{0}^{\, exit} \, \frac{\left(\Phi_{0}^{\, stayer} - \Phi_{0}^{\, exit} \right)}{\bar{\Phi}} + S_{0}^{\, exit} \, \frac{\left(\Phi_{0}^{\, stayer} - \Phi_{0}^{\, exit} \right)}{\bar{\Phi}} + S_{0}^{\, exit} \, \frac{\left(\Phi_{0}^{\, stayer} - \Phi_{0}^{\, exit} \right)}{\bar{\Phi}} + S_{0}^{\, exit} \, \frac{\left(\Phi_{0}^{\, stayer} - \Phi_{0}^{\, exit} \right)}{\bar{\Phi}} + S_{0}^{\, exit} \, \frac{\left(\Phi_{0}^{\, stayer} - \Phi_{0}^{\, exit} \right)}{\bar{\Phi}} + S_{0}^{\, exit} \, \frac{\left(\Phi_{0}^{\, stayer} - \Phi_{0}^{\, exit} \right)}{\bar{\Phi}} + S_{0}^{\, exit} \, \frac{\left(\Phi_{0}^{\, stayer} - \Phi_{0}^{\, exit} \right)}{\bar{\Phi}} + S_{0}^{\, exit} \, \frac{\left(\Phi_{0}^{\, stayer} - \Phi_{0}^{\, exit} \right)}{\bar{\Phi}} + S_{0}^{\, exit} \, \frac{\left(\Phi_{0}^{\, stayer} - \Phi_{0}^{\, exit} \right)}{\bar{\Phi}} + S_{0}^{\, exit} \, \frac{\left(\Phi_{0}^{\, stayer} - \Phi_{0}^{\, exit} \right)}{\bar{\Phi}} + S_{0}^{\, exit} \, \frac{\left(\Phi_{0}^{\, stayer} - \Phi_{0}^{\, exit} \right)}{\bar{\Phi}} + S_{0}^{\, exit} \, \frac{\left(\Phi_{0}^{\, stayer} - \Phi_{0}^{\, exit} \right)}{\bar{\Phi}} + S_{0}^{\, exit} \, \frac{\left(\Phi_{0}^{\, stayer} -$$

$$\varphi_{i1} = \frac{Y_{i1}}{L_{i1}}$$

$$s_{i1} = \frac{L_{i1}}{\sum L_{i1}}$$

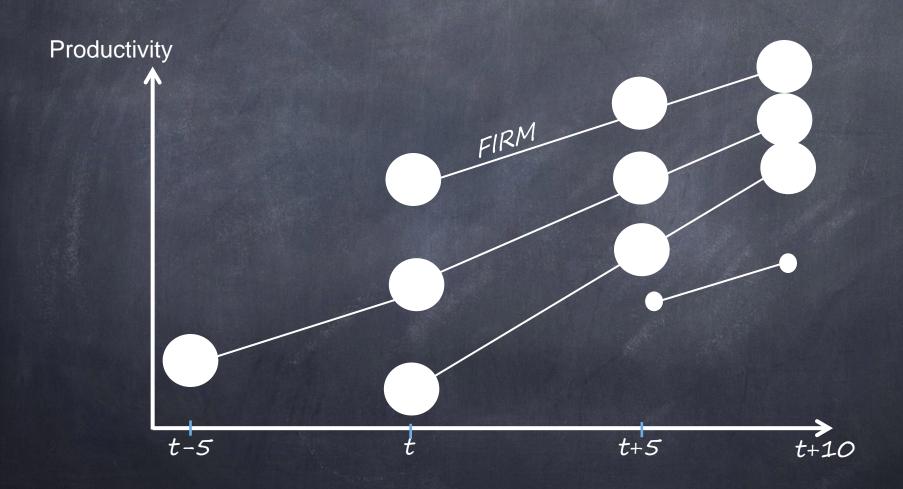

$$|\varphi_{i1} = \frac{Y_{i1}}{L_{i1}}| s_{i1} = \frac{L_{i1}}{\sum L_{i1}}| \Phi_{1} = \sum s_{i} \frac{Y_{i1}}{L_{i1}} = \frac{\sum_{i} Y}{\sum_{i} L}|$$

- Note that $\ln \frac{\Phi_1}{\Phi_0} \cong \frac{\Phi_1 \Phi_0}{\bar{\Phi}}$
- See Balk, B. M. (2016). The Dynamics of Productivity Change: A Review of the Bottom-Up Approach. In W. H. Greene, L. Khalaf, C., R. Sickles, M. Veall, & M.-C. Voia (Eds.), Productivity and Efficiency Analysis (pp. 15-49): Springer.

Empirical analysis

- Based on paper "Reaalisten yksikkötyökustannusten kehitys ja siihen vaikuttavat tekijät Suomessa ja Ruotsissa", Maliranta 2016
- Panel data on firms in Finland
- Cover basically all firms (thanks to use of register data)

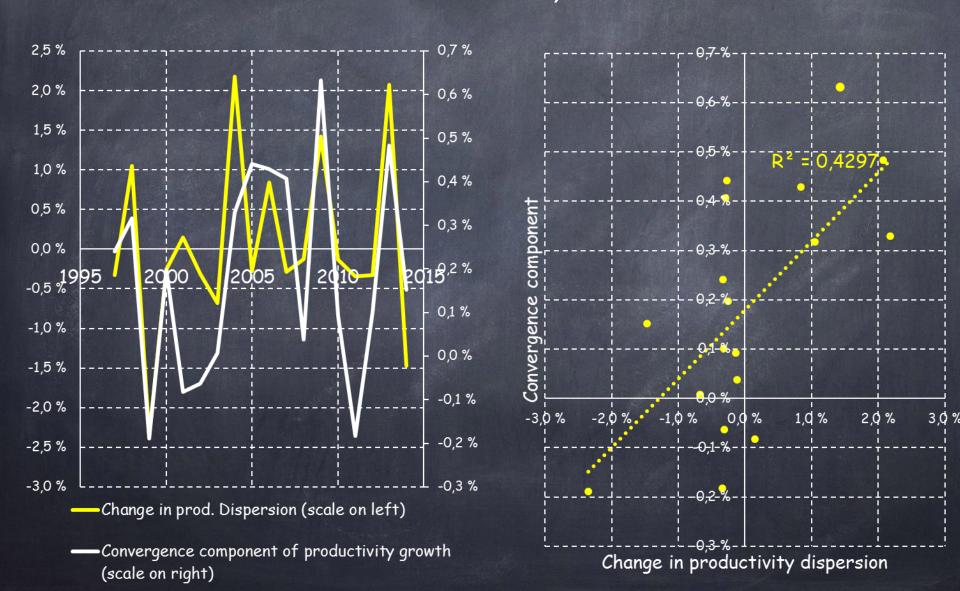
Productivity growth in industry, within firms & creative destruction


Productivity dispersion and "creative destruction" (within 17 Business sector industries)

—Productivity dispersion (scale on left)

—Between component of labour productivity growth (scale on right)

Productivity growth and convergence between low and high productivity firms


"Convergence"-component

$$\frac{\Phi_{1} - \Phi_{0}}{\bar{\Phi}} = \sum\nolimits_{i \in \Omega_{S}} \overline{s}_{i}^{\textit{stayer}} \frac{\Delta \varphi_{i}}{\bar{\varphi}_{i}} + \left[\sum\nolimits_{i \in \Omega_{S}} \overline{s}_{i}^{\textit{stayer}} \frac{\Delta \varphi_{i}}{\bar{\varphi}_{i}} \left(\frac{\bar{\varphi}_{i} - \bar{\Phi}}{\bar{\Phi}}\right)\right] + \sum\nolimits_{i \in \Omega_{S}} \frac{\bar{\varphi}_{i}}{\bar{\Phi}} \cdot \Delta s_{i}^{\textit{stayer}} + S_{1}^{\textit{entrant}} \frac{\left(\Phi_{1}^{\textit{entrant}} - \Phi_{1}^{\textit{stayer}}\right)}{\bar{\Phi}} + S_{0}^{\textit{exit}} \frac{\left(\Phi_{0}^{\textit{stayer}} - \Phi_{0}^{\textit{exit}}\right)}{\bar{\Phi}}$$

$$\varphi_{i1} = \frac{Y_{i1}}{L_{i1}} \qquad s_{i1} = \frac{L_{i1}}{\sum L_{i1}} \qquad \Phi_{1} = \sum s_{i} \frac{Y_{i1}}{L_{i1}} = \frac{\sum_{i} Y}{\sum_{i} L}$$

$$\Phi_{1} = \sum s_{i} \frac{Y_{i1}}{L_{i1}} = \frac{\sum_{i} Y}{\sum_{i} L}$$

Relationship between convegence component and productivity dispersion (within 17 Business Sector industries)

Conclusions

- Productivity dispersion between firms has increased within industries
 - Associated with increase in wage dispersion
- Not because less cleansing through creative destruction (it has increased)
- Slight indication of decrease in "convergence" between low and high productivity firms (& labor mobility has remained strong in Finland)
- Increased productivity dispersion may reflect technological change and innovation activity