

KUINKA TEHDÄÄN SUOMALAINEN HIILINEUTRAALI ALUS?

VAIHTOEHTOISET POLTTOAINEET JA ENERGIALÄHTEET

Helsinki, April 12th, 2023

Oskar Levander, SVP Business Development

KONGSBERG PROPRIETARY: This document contains KONGSBERG information which is proprietary and confidential. Any disclosure, copying, distribution or use is prohibited if not otherwise explicitly agreed with KONGSBERG in writing. Any authorised reproduction in whole or in part, must include this legend. © 2018 KONGSBERG – All rights reserved.

MARINE TREND: GHG REDUCTION

Society is demanding action!

KONGSBERG PROPRIETARY - See Statement of Proprietary information

Environmental ambitions

reduction of Green House Gas (GHG) emissions

New targets in the summer?? ~

GHG emissions from

 CO_2 emissions per transport

work

international shipping

IMO ambition: Levels of ambition compared to 2008

2030

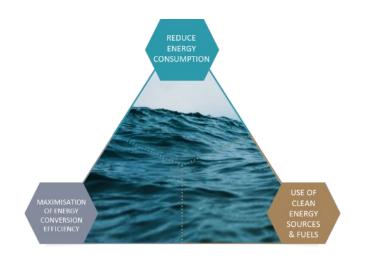
-50

* EU * * EU * * * *

The European Green Deal "Fit for 55 package" Levels compared to 1990 levels

CLIMATE NEUTRAL

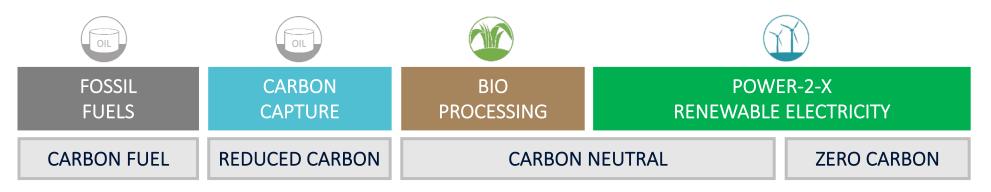
GHG emissions



Means to reduce GHG footprint

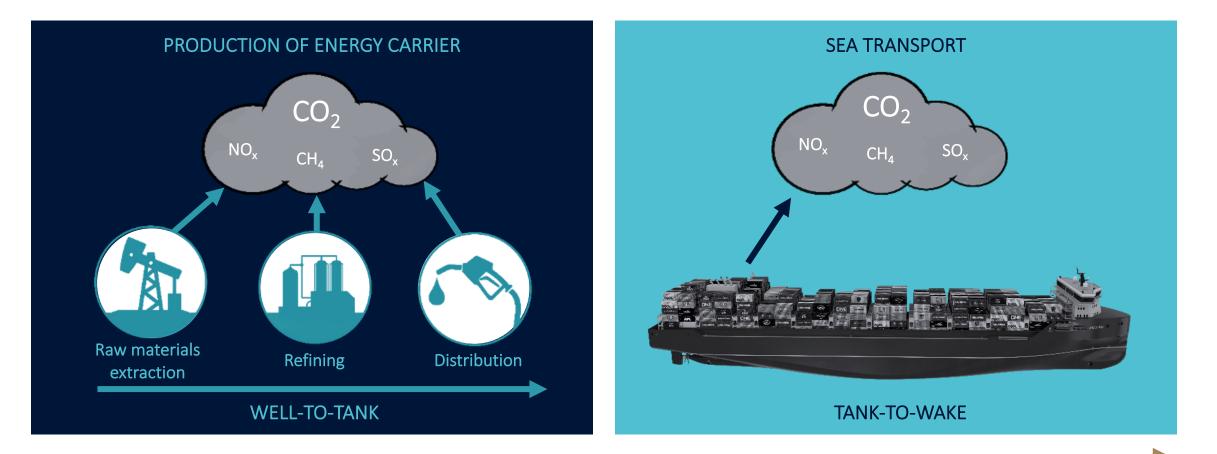
Measures to improve index values or compliance

			IMO		**** * EU * * * *			
		EEDI	EEXI	CII	ETS	FuelEU	ETD	
	Low carbon fuels	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	?	
ZG√	Fuel blending	-	-	\checkmark	\checkmark	\checkmark	?	
CES	Wind power	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
CLEAN ENERGY SOURCES	Solar	\checkmark	1	\checkmark	\checkmark	\checkmark	\checkmark	
CLE	Wave power	-	-	\checkmark	\checkmark	-	\checkmark	
	Shore power	_	-	\checkmark	\checkmark	\checkmark	\checkmark	
	Propulsion efficiency	\checkmark	\checkmark	\checkmark	\checkmark	—	\checkmark	
ζ ζ C	Machinery efficiency	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark	
ENERGY EFFICIENCY	Waste heat recovery	?	?	\checkmark	\checkmark	-	\checkmark	
	EcoAdviser	-	-	\checkmark	\checkmark	-	\checkmark	
	Smart energy management	-	-	\checkmark	\checkmark	-	\checkmark	
	Route optimisation	-	-	\checkmark	\checkmark	—	\checkmark	
	Operate at lower speeds	-	-	\checkmark	\checkmark	-	\checkmark	
Z ND S	Operational efficiency	_	-	\checkmark	\checkmark	—	\checkmark	
ENERGY DEMAND	Hotel load reduction	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark	
	Lower resistance (eg. air lubrication, hull coating,)	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark	
	Hull cleaning (e.g. Hull skater)	-	-	\checkmark	\checkmark	-	\checkmark	
	Engine de-rating	\checkmark	\checkmark	-	-	-	-	



Fuel transition

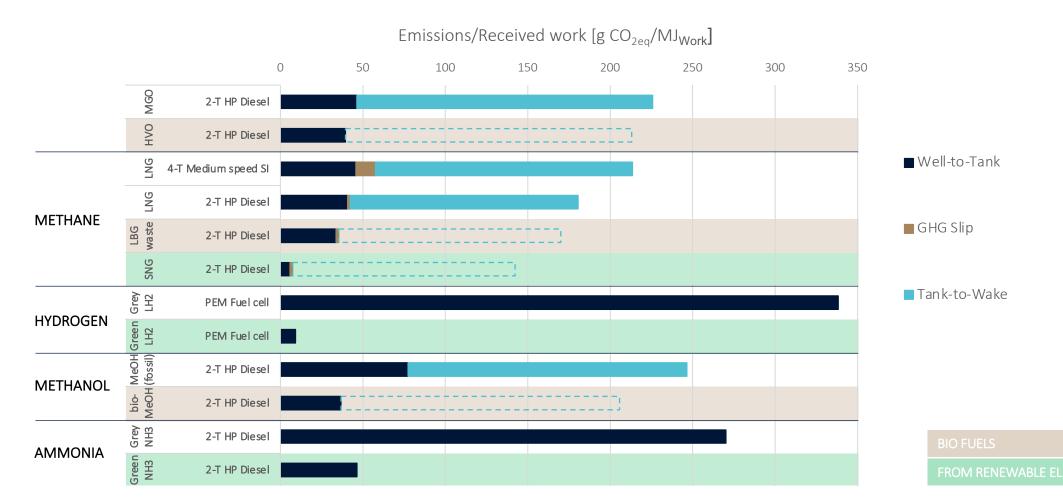
Fuel production pathways


DIESEL	MGO / LSFO		bio diesel / HVO	e-DIESEL	
HYDROGEN	grey H ₂	blue H ₂			green H ₂
METHANE	LNG		LBG	LSNG / e-LNG	
AMMONIA	grey NH ₃	blue NH_3			green NH ₃
METHANOL	MeOH	blue MeOH	bio-MeOH	e-MeOH	

WORLD CLASS – Through people, technology and dedication

CCS		NH3		МеОН	Methanol
LSNG	Liquefied Synthetic Natural Gas	H2	Hydrogen	HVO	Hydrotreated Vegetable Oil

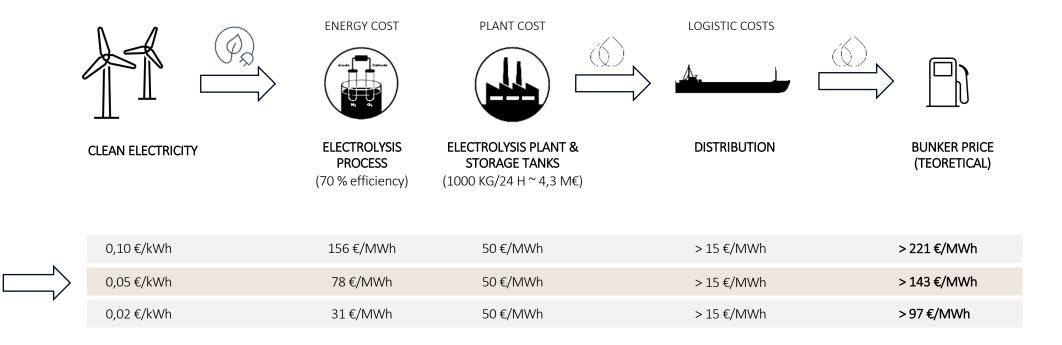
Life cycle emissions WELL-TO-TANK – TANK-TO-WAKE


LCA transport (WELL-TO-WAKE)

KONGSBERG PROPRIETARY - See Statement of Proprietary information

Well to wake – GHG emissions

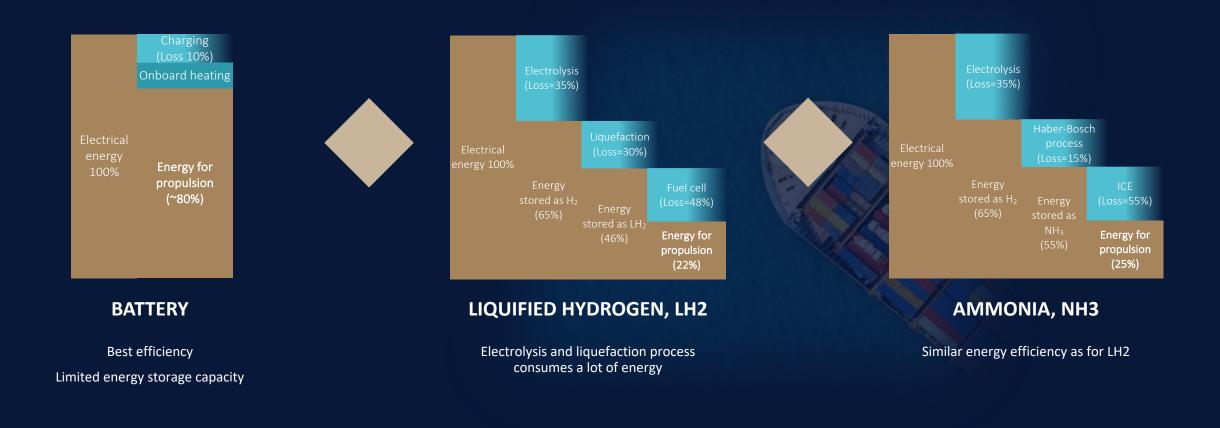
Example: 2000 TEU feeder


Low carbon fuel options

	HVO	LBG / e-LNG CH ₄	Methanol MeOH	Ammonia NH₃	Hydrogen H ₂	Battery
Space requirement relative to MGO		2.7 x	2.5 x	3.2 x	8-25	?
Emission reduction comp. to MGO	-57%	-80%	-80%	-85%	-90%	-95%
Safety concerns			🕹 🚸	🗇 🗇	I	
Infrastructure & availability	\bigcirc	\bigcirc	\bigcirc			\bigcirc
Rules & regulations			\bigcirc	\bigcirc	\bigcirc	\bigcirc
Prime mover availability and maturity			\bigcirc	2025	\bigcirc	

Power-2-X fuels will be expensive

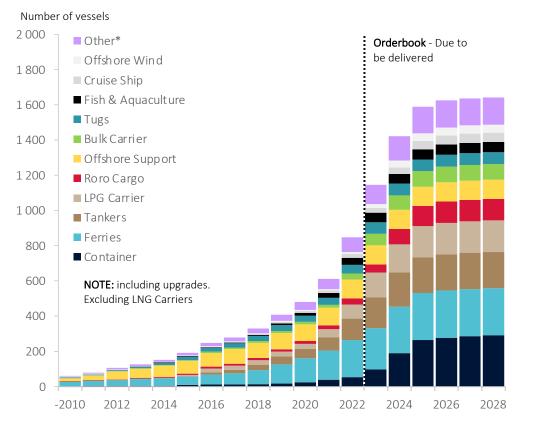
Will hydrogen price be attractive in the future?

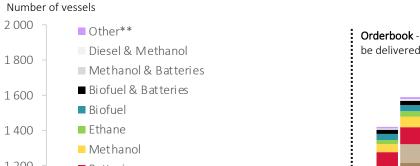

Reference fuel price examples:

- MGO: 600 \$/ton ≈ 44 €/MWh
- LNG: 10 \$/mmBTU ≈ 34 €/MWh

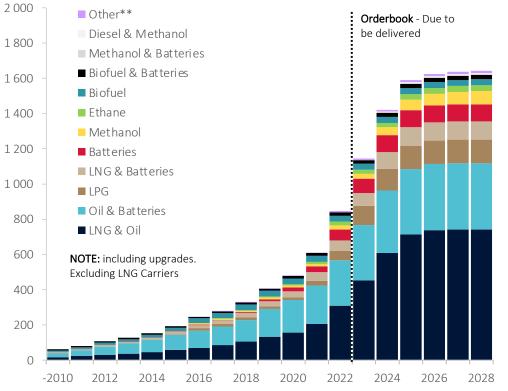
Efficient use of renewable electricity

How much energy can be utilized onboard the vessel



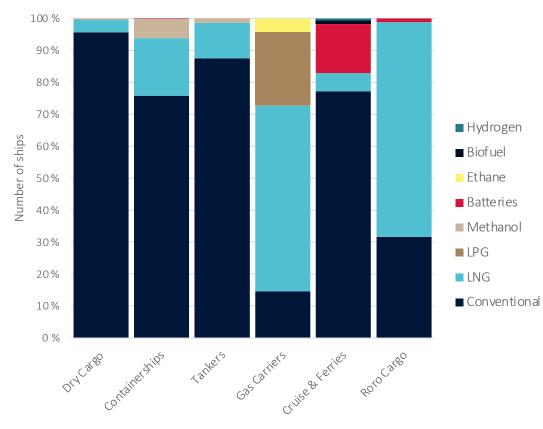

Alternative Fuels

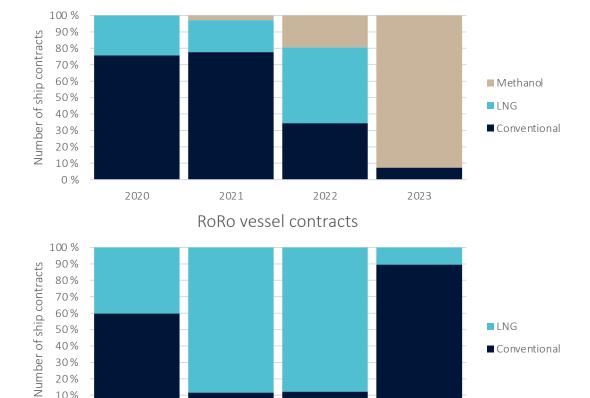
Fleet- and orderbook development by delivery year


VESSEL TYPES WITH ALTERNATIVE FUEL

*Other: General Cargo, Multi-purpose Cargo, Yachts, Research, Dredgers, Cable layers, Anti-Pollution Vessels, Work / Repair Vessels, misc. Offshore and misc. other.

ALTERNATIVE FUEL TYPES


**Other: Diesel & Methanol, Hydrogen, Diesel & LPG, Heavy Fuel Oil & LNG, CNG & Batteries, Diesel & CNG


WORLD CLASS - Through people, technology and dedication

Uptake of alternative fuels

Number of ships contracted during 2020-2023

2022

2023

Container vessel contracts

40%

30% 20% 10% 0 %

2020

2021

Conventional

Future fuel vs ship segments

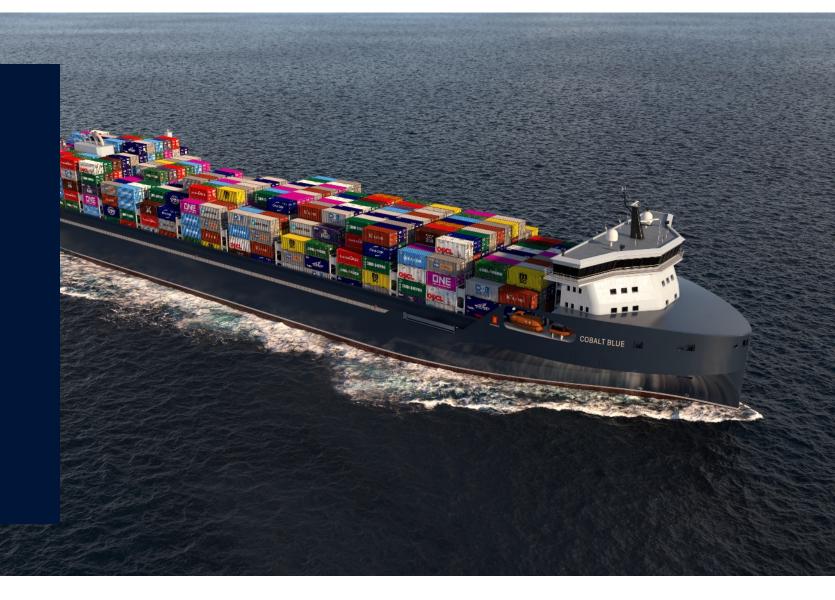
	CRUISE	ROPAX	ROADFERRY	TUG	TRAWLER	OSV	SOV	SHORT SEA	CONTAINER	BULKER
,							#18 ¹	<u></u>	مند وروا الله	
PURE BATTERY (shore power)	-	_	\checkmark		_	_		\checkmark	_	_
COMPRESSED HYDROGEN	-	-	\checkmark	\checkmark	\checkmark	-	-	\checkmark	-	-
LIQUIFIED HYDROGEN	-	-	\checkmark	-	\checkmark	-	-	-	-	-
AMMONIA	-	-	_	-	-	\checkmark	-	\checkmark	\checkmark	\checkmark
METHANE	\checkmark	\checkmark	\checkmark	-	_	\checkmark	-	\checkmark	\checkmark	\checkmark
METHANOL	\checkmark	\checkmark	\checkmark	-	_	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
HVO	\checkmark	\checkmark	_	_						

KONGSBERG PROPRIETARY - See Statement of Proprietary information

Future fuel vs ship segments

Case studies

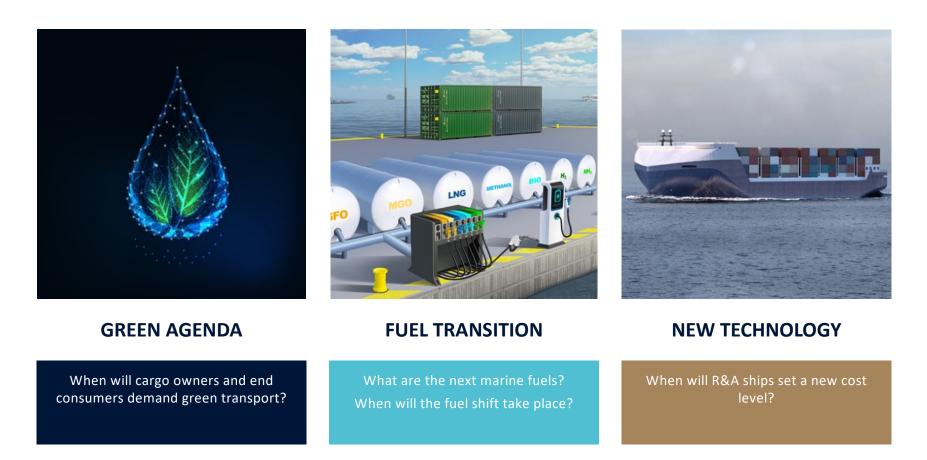
	CRUISE	ROPAX	ROADFERRY	TUG	TRAWLER	OSV	SOV	SHORT SEA	CONTAINER	BULKER
,								خنب		
PURE BATTERY (shore power)	_	_	\checkmark	\checkmark	_	_	\checkmark	\checkmark	_	-
COMPRESSED HYDROGEN	-	-	\checkmark	\checkmark	\checkmark	_	-	\checkmark	_	-
LIQUIFIED HYDROGEN	-	_	\checkmark	_	\checkmark	-	-	_	_	-
AMMONIA	-	-	-	-	-	\checkmark	-	\checkmark	\checkmark	\checkmark
METHANE	\checkmark	\checkmark	\checkmark	_	-	\checkmark	-	\checkmark	\checkmark	\checkmark
METHANOL	\checkmark	\checkmark	\checkmark	_	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
HVO	\checkmark	_	_							

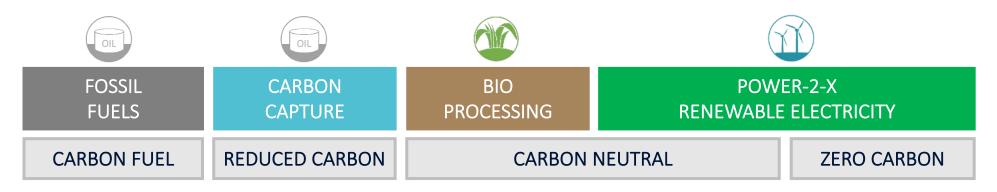

KONGSBERG PROPRIETARY - See Statement of Proprietary information

KONGSBERG

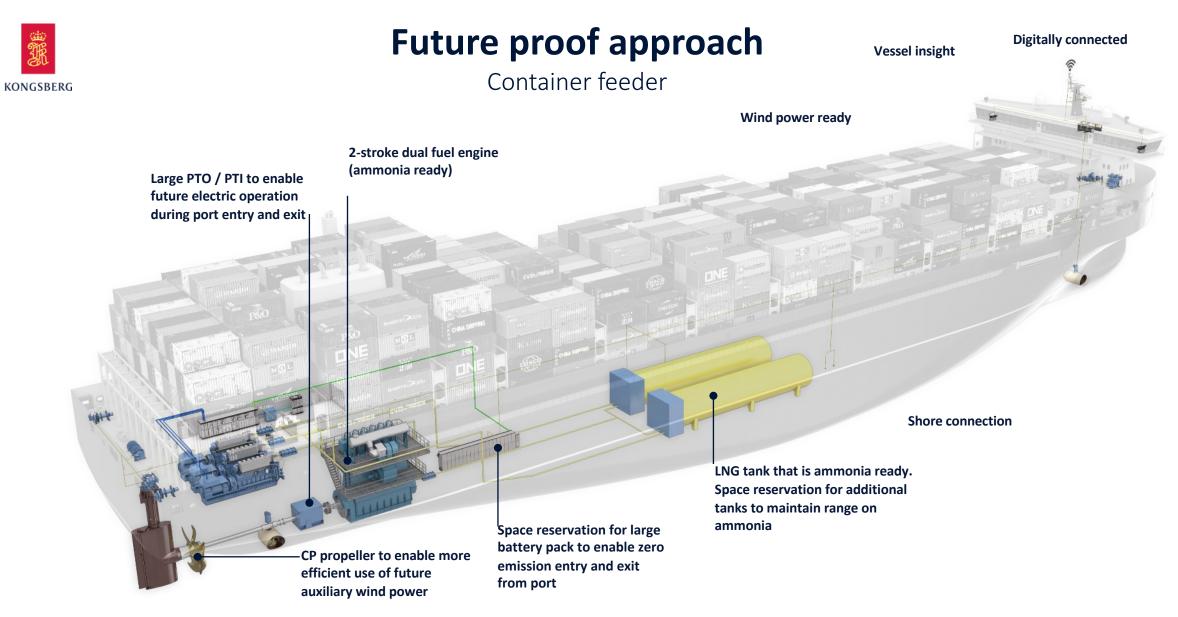
CASE STUDY:

FUTURE PROOF


2 000 TEU FEEDER


Future proof

What should ship owners invest in today?

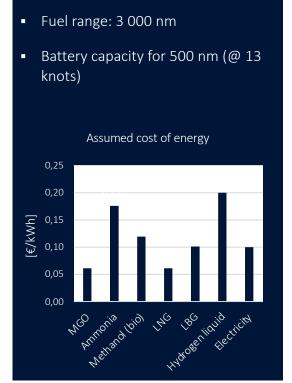

Fuel transition pathways

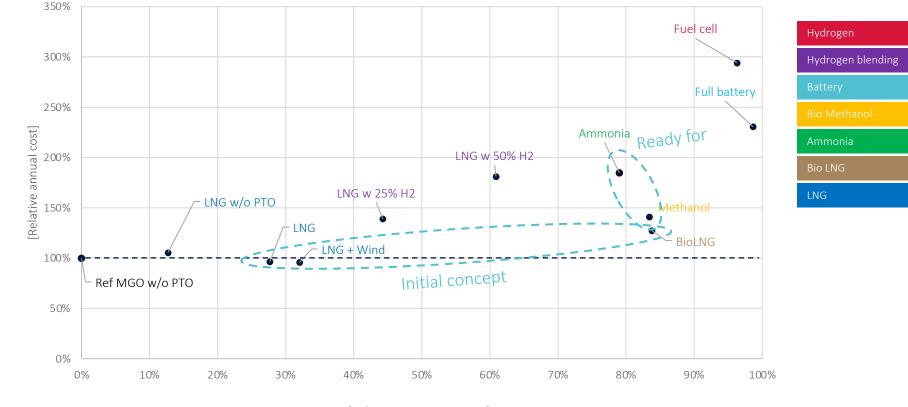
DIESEL Liquid diesel	MGO / LSFO		bio diesel / HVO	e-DIESEL	
HYDROGEN	grey H ₂	blue H ₂			green H ₂
METHANE LNG dual fuel	LNG	LNG dual fuel + conversion	LBG	SLNG / e-LNG	LNG dual fuel + conversion
AMMONIA	grey NH_3	blue NH_3			green NH ₃
METHANOL ^{Methanol dual fuel}	MeOH	blue MeOH	bio-MeOH	e-MeOH	

WORLD CLASS – Through people, technology and dedication

CCS	Carbon Capture and Sequestration	NH3	Ammonia	MeOH	Methanol
LSNG		H2		HVO	Hydrotreated Vegetable Oil

WORLD CLASS – Through people, technology and dedication


KONGSBERG PROPRIETARY - See Statement of Proprietary information



Assumptions:

Container feeder

Relative annual cost (OPEX+CAPEX) vs CO₂ benefit

[Relative emission savings]

Hybrid ships

Hurtigrutten: Roald Amundsen & Fridtjof Nansen

Battery retrofits

Energy Storage Deckhouse

Integration into DP, PMS & Alarm System

20-43%

MAINTENANCE REDUCTION BY REDUCED RUNNING HOURS OF GENERATORS

FUEL SAVINGS BY RUNNING ONLINE GENERATORS MORE EFFICIENT

Battery power is becoming a reality for small ships

Road ferries

Coastal cargo

Tugs

. . .

Fuel cells

HYSEAS III - Fuel cell and battery full scale test bed

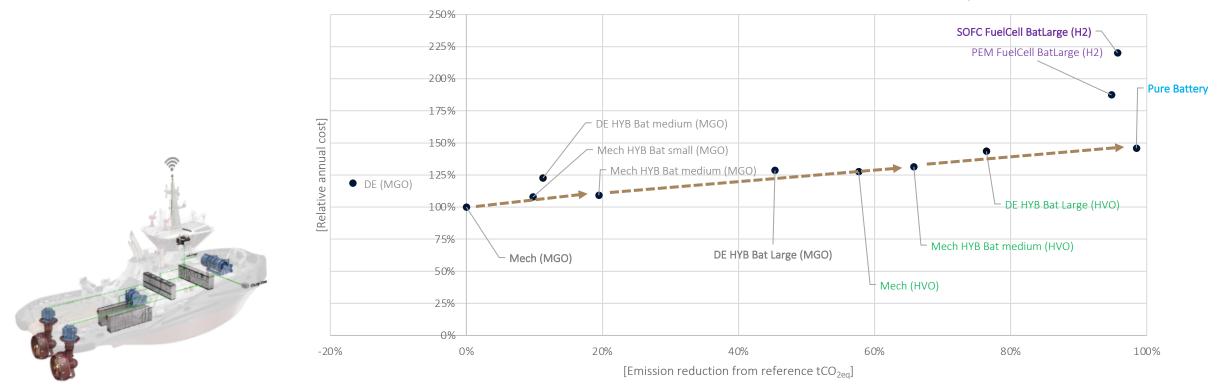
KONGSBERG

CASE STUDY:

LOW EMISSION HARBOUR TUGS

Power and propulsion systems for tugs

WORLD CLASS – Through people, technology and dedication


KONGSBERG PROPRIETARY - See Statement of Proprietary information

Harbour Tugs Relative annual cost (OPEX+CAPEX) vs CO₂ benefit

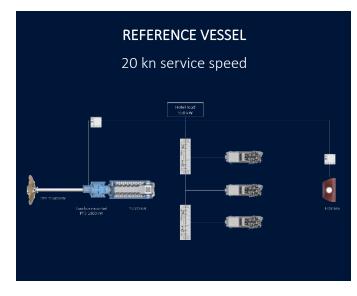
Hydrogen Renewable electricity HVO – renewable diesel Diesel

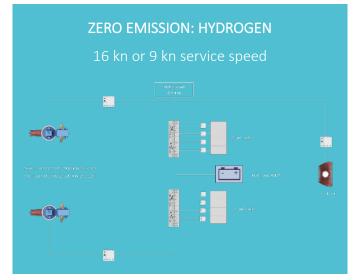
Relative annual cost (OPEX+CAPEX) vs Well to Wake CO_{2eq}

Relative annual costEnergy pricesOPEX (fuel, engine maintenance, battery replacement cost)MGO \$600/ton (17.0€/GJ)Compressed H2 8000€/ton (66.7€/GJ)CAPEX financing @6% for 10 years with no residual valueHVO \$2000/ton (42.2€/GJ)Electricity 0.15€/kWh(41.7€/GJ)

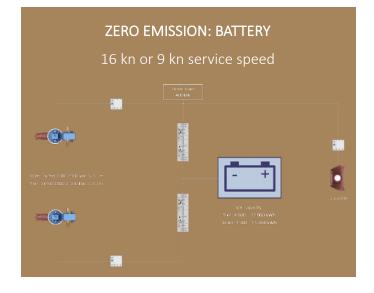
KONGSBERG

CASE STUDY:


ZERO EMISSION 1 500 LM RORO


RoRo vessel study

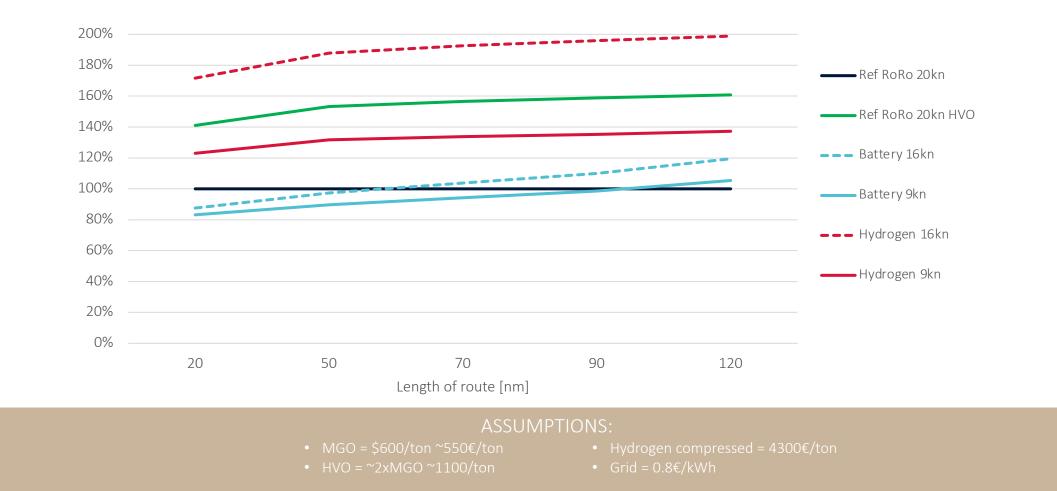
Machinery options


DIESEL OR HVO

1 x diesel engine 15,6 MW 3 x diesel gensets

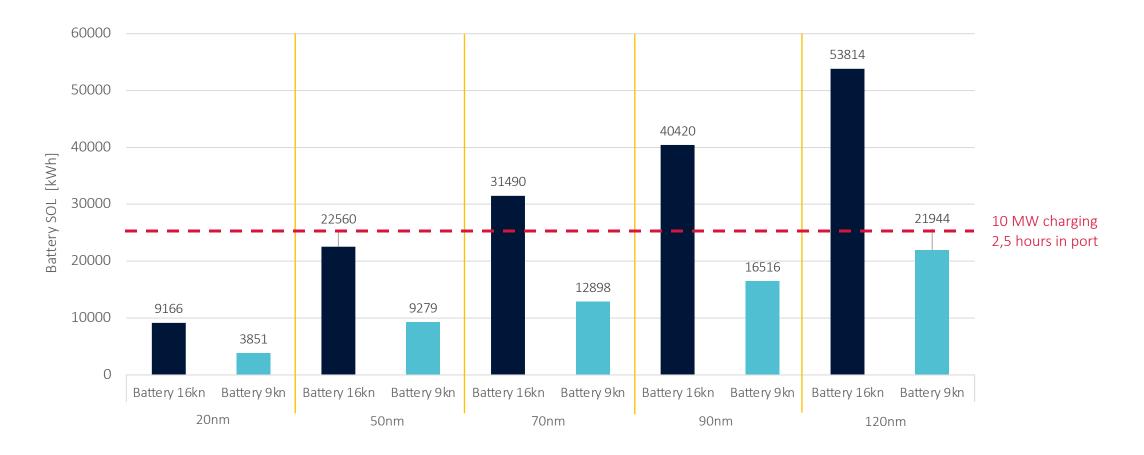
HYDROGEN AND FUEL CELLS

Installed fuel cell power: 16kn: 12 000 kW (30 x 400 kW) 9kn: 3 600 kW (9 x 400 kW)


PURE BATTERY

Installed battery capacity 16kn: 9 500 – 55 000 kWh 9kn: 4 000 – 22 000 kWh

Total transport cost


Relative annual cost per transported RoRo lanemeter

Battery capacity

Electric RoRo

Making electric feasible

Electric RoRo

- Short routes
- Lower speed
- Rethink economy of scale
 - Energy storage capacity
 - Charging power
- New novel ship design

KONGSBERG

SUMMARY

Summary

Finding the path towards carbon neutral shipping

ELECTRIC

Green technologies support increased electrification

Batteries is the most efficient way to use renewable electricity

Growing number of hybrids and pure electric vessels

FUTURE PROOF

Competitive in today's market - ready for low carbon fuels:

- Ammonia or Methanol ready LNG system
- Battery ready

Best efficiency:

- PTO/PTI
- Wind propulsion

NAVIGATE FUEL TRANSITION

Multifuel capability:

- LNG BioLNG LSNG
- Bio and green methanol
- Green ammonia
- HVO

Aim for highest efficiency

KONGSBERG PROPRIETARY - See Statement of Proprietary information

PROTECHTING PEOPLE AND PLANET

WORLD CLASS – Through people, technology and dedication