KANSALLISEN ENERGIA- JA
ILMASTOSTRATEGIAN LAADINNASSA KÄYTETYT
SKENAARIOT

TEKSTILUONNOS 2.12.2005
Sisällysluettelo

1 Tausta .. 4
2 Lähestymistapa .. 5
3 WM-skenario ... 8
 3.1 Keskeiset lähtökohdat ... 8
 3.1.1 Väestö ja työvoima .. 8
 3.1.2 Kansantalouden kysyntätekijöiden kehityksestä .. 9
 3.1.3 Toimialoittainen kehitys .. 10
 3.1.4 Energian maailmanmarkkinahinnat .. 11
 3.2 Energian kulutus WM-skenaariossa ... 15
 3.2.1 Teollisuus .. 15
 3.2.2 Lämmitys ... 23
 3.2.3 Kotitalous ja palvelusektorin sähkön kulutus ... 24
 3.2.4 Liikenne .. 26
 3.2.5 Muut ... 27
 3.3 Sähkön kokonaiskulutus ja hankinta .. 29
 3.4 Energian kokonaiskulutus ... 31
 3.5 Kasvihuonekaasupäästöt WM-skenaariossa ... 32
 3.5.1 Polttoaineperäiset hiilihiiliksidipäästöt .. 32
 3.5.2 Muut hiilihiiliksidipäästöt ... 33
 3.5.3 Metaani (CH₄) ... 34
 3.5.4 Dityppioksidi (N₂O) .. 35
 3.5.5 Fluoratut hiilivedyt tai F-kaasut .. 35
 3.6 WM-skenaarion herkkyystarkastelut ... 36
 3.6.1 Herkkyystarkastelujen lähtökohdat ja tarkoitus .. 36
 3.6.2 Muutokset energiavaltaisten toimialojen kasvussa ... 36
 3.6.3 Yhteenveto herkkyystarkasteluiista ... 37
 3.7 Yhteenveto kokonaispäästöistä ... 38
4 Lähestymistapojen päästövelvoitteen hoitamiseksi ... 41
 4.1 Joustomekanismit ... 41
 4.1.1 EU:n päästökauppa .. 41
 4.1.2 Kioton mekanismit .. 43
 4.2 Päästösiitoumusten toteuttaminen .. 45
 4.3 Kioton sitoumuskausi .. 46
5 WM-skenaario ... 52
 5.1 Keskeiset lähtökohdat ... 52
 5.2 Energiapolitiikan keinot .. 53
 5.3 Ohjuskeinojen vaikuttavuus .. 55
 5.3.1 Vaikutus energian hintaan ... 55
 5.3.2 Päästökaupan vaikutus polttoaineenkäyttöön ... 59
 5.4 Puu ja turve päästökaupan oloissa .. 60
 5.4.1 Puun energiakäyttö .. 60
 5.4.2 Turve ... 62
 5.5 Energian kysyntä ja hankinta WM-skenaariossa ... 63
 5.6 WM-skenaarion kasvihuonekaasupäästöt .. 69
 5.7 WM-skenaarion herkkyystarkastelu .. 72
6 Vaikutusarviot

6.1 Arvioiden lähtökohdat

6.2 Energiajärjestelmän kustannukset

6.2.1 Välittömät nettomääräiset kokonaiskustannukset

6.2.2 Välittömät kustannukset sektorittain

6.2.3 Sallittujen päästömäärien allokoinnista

6.3 Kansantaloudelliset vaikutukset

6.3.1 Vaikutukset Kiiton sitoumuskaudella

6.3.2 Kiiton sitoumuskauden jälkeen

6.4 Aluetaloudellisia vaikutuksia
1 Tausta

Taustaselvitys on laadittu yhteistyössä eri ministeriöiden (kauppa- ja teollisuusministeriö/KTM, liikenne ja viestintäministeriö/LVM, maa- ja metsätalousministeriö/MMM, ulkoministeriö/UM, valtiovarainministeriö/VM ja ympäristöministeriö/YM) virkamiesten kanssa niin, että kukin ministeriö on vastannut oman hallinnonhaaraansa koskien aineiston tuottamisesta ja hankkimisesta. KTM on vastannut raportin kirjoittamisesta ministeriöiden virkamiehistö koostuvan yhdysverkon ohjauksessa.

YM on vastannut rakennusten lämmityskäyttöä, jätteiden ja jätehuollon sekä työkoineiden (pois lukien maa- ja metsätalouskoneet) päästölaskelmista. LVM:n tehtävänä on ollut liikenteen polttoaineiden ja sähkön käytön ja päästöjen arviointi. MMM:lle ovat kuuluneet maa- ja metsätalouslaitosten ja nielut. KTM on vastannut teollisuuden, rakennustoiminnan, kotitalous- ja palvelujen energian käytön laskemista sekä energian tuotantosektorin polttoaineiden ja hiilidioksidipäästöjen laskennasta kokonaisuudessaan sekä laskelmien yhteenottamiseen. Ministeriö rooliin on kuulunut myös energiatalouden monipuolisuuteen sekä varmuuteen liittyvistä valinnoista huolehtiminen laskennan kuluessa nykyisen energiapoliitiikan linjausten mukaisesti.
2 Lähestymistapa

Skenaarioanalyysi

WM-skenaario on luonteeltaan viiteskenaario, jota tarvitaan kun arvioidaan uusien poliittikkaatomein tarvetta, poliittikkoaimien mitoitusta ja poliittikan kustannuksia. WM-skenaario ei ole ennuste tulevasta, vaan sisäisesti ristiriidaton projektio, jossa poliittikkoaimen toimintatapana on jäädytetty skenaarion tekohetken tasolle. WM-skenaario tuottaman tuloksen harvoin toivotaan toteutuvan. Kasvihuonekaasupäästöjen kehityksen arvioinnissa skenaario antaa tietoa päästöjen kehityksen suunnasta ja päästöjen määrästä suhteessa sitoumusvelvoitteisiin, jos nykyistä poliittikkaa ei muuteta. WM-skenaarioissa ei siten huomioida uusia toimenpiteitä, joista ei ole yksiselitteisiä päätoksiä olemassa. Näin ollen esimerkiksi EU:ssa valmisteilla olevien uusien direktiivien vaikutuksia ei sisällytetä WM-skenaarioon ennen kuin ne on toimeenpantu Suomessa.

Skenaarioiden keskeiset lähtökohdat

WM-ja WAM-skenaarioiden laadinnassa keskeisimmät rakenteelliset yhteiset lähtökohdat ovat:

- talouden kehitys kotimaassa ja vientimarkkinoilla
- kotimaisen väestön määrä ja rakenne
- energian maailmanmarkkinahintojen kehitys

Suomen kansantalouden odotetaan kasvavan kuluvan vuosikymmenen aikana noin 2,5 prosentin vuosivauhtia ja hidastuvan sen jälkeen jonkin verran. Kasvun painopiste on arviossa palvelualoilla, erityisesti yksityissä palveluissa, vaikka tarkastelujaksen loppupuolella myös julkisten palvelujen kasvun arvioidaan kiihtyvän. Teollisuuden energiantuotannon kehitys julkaistaan, koska energiantuotannon kehityksen alainen arvioita kasvavan maita teollisuusaloja hitaammin. Koska talouden kehitysskenaarioon liittyy erittäin merkittävä epävarmuus, sekä innottomasti niin koko kansantalouden kuin sen sektorienkin osalta, on skenaarioissa tehty herkkyyystarkastelut palvelun ja energiantuotannon kehityksen osalta.

Kansantalouden kehitysnäkymät perustuvat skenaarioissa keskipitkällä aikavälillä suomalaisten taloustutkimuslaitosten arviointiin. Pidemmän aikavälin kansantalouden kehitysskenaario on tehnyt valtion taloustutkimuslaitoksen, valtiovarainministeriön ja kauppa- ja teollisuusministeriön yhteistyönä.

Taulukko 1. Väestön, kansantalouden ja energian maailmanmarkkinahintojen kehitys WM- ja WAM-skenaarioissa.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- kasvuvauhti</td>
<td>3 %/v</td>
<td>2,5 %/v</td>
<td>2,5 %/v</td>
</tr>
<tr>
<td>- rakenne</td>
<td>palveluvaltaistumista</td>
<td>palveluvaltaistumista</td>
<td>palveluvaltaistumista</td>
</tr>
<tr>
<td>- teollisuuden rakenne</td>
<td>kevenee</td>
<td>kevenee</td>
<td>kevenee</td>
</tr>
<tr>
<td>Väestö:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- määrä</td>
<td>kasvaa hitaasti</td>
<td>kasvaa hitaasti</td>
<td>kasvaa hitaasti</td>
</tr>
<tr>
<td>- rakenne</td>
<td>ikääntyvä väestö</td>
<td>ikääntyvä väestö</td>
<td>ikääntyvä väestö</td>
</tr>
<tr>
<td>Energia mm-hinnat</td>
<td>vakaat</td>
<td>vakaat</td>
<td>vakaat</td>
</tr>
</tbody>
</table>

Maakaasuverkon laajentumisesta on myös tehty erilliset oletukset, vaikka siirtokapasiteetin kasvu on energia-alan yritysten asia.

Sekä WM- että WAM-skenaarioiden laskennassa on tehty energiainfrastruktuurin osalta taulukon 2 mukaiset oletukset. Oletukset on tehty analyysiä varten ja ne voivat olla toisenkinlaisia tarpeen vaatiessa.

Taulukko 2. Suomen energiainfrastruktuurin kehitysoletuksia WM- ja WAM-skenaarioisissa.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sähkön hankinta:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- ydinvoima</td>
<td>nykyinen kapasiteetti</td>
<td>1600 MW</td>
<td>ei kapasiteetin kasvu</td>
</tr>
<tr>
<td>- sähkön tuonti</td>
<td>Viron tuonti, 350 MW</td>
<td>ei muutosta</td>
<td>ei muutosta</td>
</tr>
<tr>
<td>- vesivoima</td>
<td>suojelulait voimassa, ei Vuotosta</td>
<td>suojelulait voimassa, ei Vuotosta</td>
<td>suojelulait voimassa, ei Vuotosta</td>
</tr>
<tr>
<td>Maakaasuverkko:</td>
<td>nykyinen</td>
<td>Turun seutu: yhteyts</td>
<td>ei muutoksia</td>
</tr>
</tbody>
</table>

3 WM–skenaario

3.1 Keskeiset lähtökohdat

<table>
<thead>
<tr>
<th>Taulukko 3. Politiikkatoimet WM-skenaariossa.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Julkinen edistämispanostus:</td>
</tr>
<tr>
<td>- energiateknologia</td>
</tr>
<tr>
<td>- energiainvestoinnit</td>
</tr>
<tr>
<td>- energiansäästö</td>
</tr>
<tr>
<td>Energiaverot, normit</td>
</tr>
<tr>
<td>vuoden 2005 taso</td>
</tr>
<tr>
<td>EU:n päästökauppa</td>
</tr>
<tr>
<td>ei huomioitu</td>
</tr>
<tr>
<td>Kioton mekanismit</td>
</tr>
<tr>
<td>ei huomioitu</td>
</tr>
</tbody>
</table>

Seuraavassa käydään yksityiskohtaisemmin läpi keskeisimmät skenaarioihin vaikuttavat lähtökohdat, joita ovat väestön ja työvoiman, kansantalouden sekä energian maailmanmarkkinoiden kehitys.

3.1.1 Väestö ja työvoima

Vuonna 2025 työikäisten lukumäärä on ennusteen mukaan noin 300 000 henkeä tämänhetkistä matalampi.

Tilastokeskuksen väestöennusteessa oletetaan nettomääräisen maahanmuuton olevan 5000 henkeä vuodessa seuraavan 20 vuoden aikana. Euroopan yhdentymiskehitys voi periaatteessa osaltaan vauhdittaa muuttoliikettä. Selvää kuitenkin on, että näköpiirissä oleva väestökehitys tulee vääristämättä vaikuttamaan kansantalouden kasvumahdollisuuksia rajoittavasti vaikka muuttoliike osittautuisi väestöennusteessa odotetusta voimakkammassakin.

Väestön ikääntyminen näkyy ensi vaiheessa työmarkkinoiden kireistyminen työvoiman tarjonnan kääntyessä laskuun.

Laskelmissa oletetaan, että työn tuottavuus kohenee jatkossakin keskimäärin 2½ prosenttia vuodessa.

Taulukko 4. Väestön määrä ikäluokittain WM-skenaariossa sekä muutos indeksinä vuosina 2003-2025, milj. henkeä

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0-14 vuotiaat</td>
<td>0,92</td>
<td>0,87</td>
<td>0,87</td>
<td>0,88</td>
<td>0,87</td>
<td>0,95</td>
</tr>
<tr>
<td>15-44 vuotiaat</td>
<td>2,03</td>
<td>1,98</td>
<td>1,94</td>
<td>1,93</td>
<td>1,90</td>
<td>0,93</td>
</tr>
<tr>
<td>45-64 vuotiaat</td>
<td>1,45</td>
<td>1,54</td>
<td>1,46</td>
<td>1,37</td>
<td>1,33</td>
<td>0,92</td>
</tr>
<tr>
<td>65+ vuotiaat</td>
<td>0,82</td>
<td>0,92</td>
<td>1,10</td>
<td>1,24</td>
<td>1,34</td>
<td>1,65</td>
</tr>
<tr>
<td>Yhteensä</td>
<td>5,22</td>
<td>5,31</td>
<td>5,37</td>
<td>5,41</td>
<td>5,44</td>
<td>1,04</td>
</tr>
</tbody>
</table>

3.1.2 Kansantalouden kysytätekijöiden kehityksestä

Kansantalouden käytettävissä olevat voimavarat, kuten työvoima, henkinen ja fyysinen pääoma, eivät yksin takaa talouskasvun jatkumista häiriöittömänä. Suomen kaltaisen avoimen kansantalouden kasvumahdollisuuksien ja kasvun rakenteeseen vaikuttaa olennaisesti myös se, miten kansainvälinen talous kehittyy.

Julkisten investointien kasvu odotetaan jäävän noin prosenttiin vuodessa pitkällä aikavälillä. Syyynä on kypsä tuotantorakenteen ja julkisen sektorin voimavarojen niukkuus.

Yksityisen kulutuksen kehitys määrittelee kotitalouksien käytettävissä olevien tulojen perustella. Työvoiman tarjonnan alennemisen kautta tapahtuva työmarkkinoiden kiristyminen luo paineita työmarkkinoille. Tämän seurauksena kotitalouksien tulojen odotetaan kasvavan hieman kokonaistuotantoa nopeammin 2010-luvun taitteessa demografisen muutoksen ollessa voimakkaamillaan. Pitkällä aikavälillä kotitalouksien tulojen arvioidaan kasvavan kansantalouden kokonaistuotannon mukaisesti.

Väestön ikärakenteen muutos tukee mukanaan merkittävää lisäpaineita julkisten kulutusmenojen kasvuun erityisesti perheiden ja hoivapalveluiden kysynnän lisääntymyssä. Skenaariossa lukeutetaankin julkisten kulutusmenojen kasvavan kokonaistuotantoa nopeammin pitkällä aikavälillä.

3.1.3 Toimialoittainen kehitys

<table>
<thead>
<tr>
<th>Toimiala</th>
<th>1990-</th>
<th>2003-</th>
<th>2010-</th>
<th>2015-</th>
<th>2003-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.1.4 Energian maailmanmarkkinahinnat

Suomi on täysin riippuvainen öljyn, kivihiilen, maakaasun ja ydinpolttoaineen kansainvälisestä saatavuudesta ja hintakehyksestä. Yhdessä näiden energialähteiden osuus Suomen energian hankinnasta on 60 %. Myös sähkön osalta Suomen energiatatalouden riippuvuus naapurimaista on huomattava. Näiden energiatuotteiden kansainvälinen kehitys tulee ottaa huomioon omalla talouttamme koskevassa päätöksenteossa ja politiikan valmistelussa.

Öljy

Joissakin kansainvälisissä arvioissa on päädytty siihen, että raakaöljyn tuotannon huippu saavutetaan useissa keskeisissä tuottajamaissa noin kymmenen vuoden sisällä, minkä jälkeen tuotanto kääntyi jopa laskuun. Nämä on jo käynyt esimerkiksi UK:n Pohjanmeren tuotannolle.

Suomessa öljyn osuus kokonaisenergiasta on laskenut 1970-luvun puolivälissä runsaasti 30 prosentista nykyiseen noin neljänneekseen. Myös sähköisesti öljyn kulutus on laskenut. Tämä on merkinnät sitä, että öljyn saatavuuteen liittyvää huoltotavarmuusriski on Suomessa huomattavasti pienentynyt ja että öljyn hinnan nousujen merkitys kansantaloudessa on_meillä selvästi pienempi kuin monissa muissa maissa.

Toteutunutta raakaöljyn hintakehitystä esittää kuva 1.
Maakaasu

Maakaasun markkinat eivät ole samalla tavalla globaalit kuin öljyllä. Toisaalta yhä suurempi osa maakaasukuljetuksista tapahtuu nesteytetyn kaasun muodossa, mutta tällä tuotteella ei kuitenkaan käydä merkittävässä määrin vielä spot-kauppaa, vaan kauppa perustuu pitkiin sopimuksiin.

Maakaasun hinta on seurannut pitkälti öljyn hintakehitystä. Kaasu pysynee kuitenkin tulevaisuudessa erityisesti öljyn nähden kilpailukykyisenä.

Todetut maakaasuvarat ovat merkittävästi suuremmat kuin öljyvarat.

Suomeen kaasua tulee vain olemassa olevaa putkireittiä pitkin Venäjältä. Useat selvitykset kaasun hankinnan hajauttamisesta eivät ole vielä johtaneet tuloksiin.
Kivihiili

Merkittäviä kivihiilen tuottajia on useita. Kivihiilen markkinat ovat maailmanlaajuiset ja toimivat, vaikkakin suppeat kivihiilen käytön kokonaismäärää suhteutettuna. Tämä saattaa aiheuttaa aika ajoin pullonkauiloja kuljetuksiin.

Harjoitettava ilmastopoliittikka rajoittaa kivihiilen kysynnän kasvua ja vaikuttaa sen hintaan. Kivihiilen maailmanmarkkinahinnan oletetaankin kehittyvän maltillisesti. Hiilen hinnan kehityksen odotetaan olevan myös maltillisempaa kuin öljyn ja maakaasun.

Sähkö

Sähkölä ei ole maailmanmarkkinoita, vaan markkinat ovat alueellisia ja nekin ovat yleensä suppeita.

![Kuva 2. Nord Pool Spot sähköpörssin hintakehitys vuodesta 2000 alkaen, €/MWh.](image-url)
3.2 Energian kulutus WM-skennariossa

3.2.1 Teollisuus

Teollisuuden sähkön ja kokonaisenergian kysyntä on arvioitu teollisuustuotannon volyymin, tuoterakenteen ja suurimpien toimialojen osalta tuotekohdaten energiankäyttötietojen perusteella.

3.2.1.1 Metsäteollisuus

Massa- ja paperiteollisuus

Massa- ja paperiteollisuus, joka on suurin teollisuuden energian käyttäjä, käyttää nykyisin noin 60 prosenttia koko teollisuuden tarvitsemasta sähköstä ja polttoaineista. Massan ja paperin valmistuksen energian käyttö riippuu ratkaisevasti tuotannon tasosta ja sen rakenteesta. Sen vuoksi toimialan energiankäyttöarviot on laadittu fyysisten tuotemäärien avulla.

WM-skennarion eri paperi- ja massalaatujen tuotannon tulevaa kehitystä arvioitaessa on käytetty hyväksi tietoja jo päätetyistä ja julkistetuista investointihankkeista, Suomen metsävarojen käyttömahdollisuksista sahkoisten metsätekohtien valossa, raakapuun tuontimahdollisuksista sekä näkemyksiä maailmanmarkkinoiden kysynnän ja tuotantorakenteen kehityksestä. Paperin ja kartongin tuotantomäärien kehitys näkyy alla olevassa kuvassa.

Tuotekohdon kehitys on kootto taulukkoon 6.

<table>
<thead>
<tr>
<th>Paperilaji</th>
<th>2003</th>
<th>2010</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puupitoiset paino- ja kirjoituspaperit</td>
<td>6 532</td>
<td>7 200</td>
<td>8 900</td>
</tr>
<tr>
<td>Hienopaperi</td>
<td>2 732</td>
<td>4 380</td>
<td>5 900</td>
</tr>
<tr>
<td>Muu paperi ja kartonki</td>
<td>3 795</td>
<td>4 400</td>
<td>5 100</td>
</tr>
<tr>
<td>Paperi ja kartonki yhteensä</td>
<td>13 059</td>
<td>15 980</td>
<td>19 900</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Indeksi, 2003=100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2010</td>
</tr>
<tr>
<td>Puupitoiset paino- ja kirjoituspaperit</td>
<td>110</td>
</tr>
<tr>
<td>Hienopaperi</td>
<td>160</td>
</tr>
<tr>
<td>Muu paperi ja kartonki</td>
<td>116</td>
</tr>
<tr>
<td>Paperi ja kartonki yhteensä</td>
<td>122</td>
</tr>
</tbody>
</table>

Massojen tuotanto kasvaa selvästi hitaammin kuin paperin ja kartongin tuotanto, koska massojen kotimaisen kysynnän kasvaessa sellun viennin arvioidaan vähenevän huomattavasti tarkasteLUAUDella ja papereiden tuotannon kasvun painopiste on päällystetyissä papereissa.

<table>
<thead>
<tr>
<th>Massa- tai paperilaji</th>
<th>2003</th>
<th>2010</th>
<th>2025</th>
<th>Indeksi, 2003=100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2003</td>
</tr>
<tr>
<td>Puupitoiset paino- ja kirjoituspaperit</td>
<td>4,6</td>
<td>5,4</td>
<td>6,9</td>
<td>118</td>
</tr>
<tr>
<td>Hienopaperi</td>
<td>2,1</td>
<td>3,4</td>
<td>4,6</td>
<td>161</td>
</tr>
<tr>
<td>Muu paperi ja kartonki</td>
<td>3,0</td>
<td>3,9</td>
<td>5,0</td>
<td>130</td>
</tr>
<tr>
<td>Mekaaniset massat</td>
<td>9,2</td>
<td>10,3</td>
<td>12,3</td>
<td>111</td>
</tr>
<tr>
<td>Sellu</td>
<td>5,2</td>
<td>5,5</td>
<td>6,6</td>
<td>105</td>
</tr>
<tr>
<td>Muut massat</td>
<td>0,3</td>
<td>0,4</td>
<td>0,4</td>
<td>110</td>
</tr>
<tr>
<td>Yhteensä</td>
<td>24,5</td>
<td>28,8</td>
<td>35,8</td>
<td>118</td>
</tr>
</tbody>
</table>

Puupitoisten papereiden tuotanto perustuu mekaanisten massojen käyttöön, mikä johtaa selluun perustuvia hienopapereita suurempaan sähkön kulutukseen. Puupitoisten papereiden tuotanto vaatii enemmän sähköä kuin hienopapereiden tuotanto, mutta noin puolta vähemmän raakapuuuta. Tuotantoarviossa näille kahdelle paperilajille on oletettu yhtä suuri suhteellinen kasvu.

Taulukko 8. Massa- ja paperiteollisuuden lämmön tarve (TWh), käytetyt polttoaineet (PJ) ja yhteistuotannon sähköntuotanto (TWh) sekä kulutuksen kehitys WM-skenaariossa vuosina 2003-2025.

<table>
<thead>
<tr>
<th>Prosessilämpö, TWh</th>
<th>2003</th>
<th>2010</th>
<th>2025</th>
<th>Indeksi 2003=100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2003</td>
</tr>
<tr>
<td>Sähkön ja lämmön yhteistuotannon sähköntuotanto, TWh</td>
<td>49,2</td>
<td>57,1</td>
<td>61,0</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>11,5</td>
<td>13,8</td>
<td>16,9</td>
<td>121</td>
</tr>
<tr>
<td>Polttoaineet TWh,</td>
<td>76,2</td>
<td>88,4</td>
<td>96,4</td>
<td>116</td>
</tr>
<tr>
<td>Ölji</td>
<td>3,6</td>
<td>3,5</td>
<td>2,8</td>
<td>100</td>
</tr>
<tr>
<td>Maakaasu</td>
<td>12,7</td>
<td>14,6</td>
<td>14,6</td>
<td>115</td>
</tr>
<tr>
<td>Kivihiili</td>
<td>0,3</td>
<td>0,0</td>
<td>0,0</td>
<td>0</td>
</tr>
<tr>
<td>Turve</td>
<td>4,3</td>
<td>5,9</td>
<td>5,8</td>
<td>138</td>
</tr>
<tr>
<td>Puuperäiset</td>
<td>55,0</td>
<td>64,0</td>
<td>72,8</td>
<td>116</td>
</tr>
<tr>
<td>Muut polttoaineet</td>
<td>0,4</td>
<td>0,4</td>
<td>0,4</td>
<td>98</td>
</tr>
</tbody>
</table>
Massa- ja paperiteollisuuden käyttämistä polttoaineista noin 70 prosenttia on puuperäisiä polttoaineita, jättepuuta, jäteliemiä ja metsähaketta. Ostopolttoaineista maakaasun ja metsähakkeen käytön odotetaan kasvavan selvästi. Myös turpeen käytön oletetaan hieman kasvavan.

Puutavaran valmistus

Mekaanisessa metsäteollisuudessa sahojen tuotannon arvioidaan kääntyvän laskuun lähivuosina kiristyneen kilpailun vuoksi vientimarkkinoilla. Tuotannon arvioidaan tarkastelluissa skenarioissa alenevan nykyisestä noin 13,5 milj. m³:sta noin 11 milj. m³:een vuoteen 2010 mennessä ja edelleen noin 10 milj. m³:een sen jälkeen.

Levytuotteiden tuotannon kasvun arvioidaan olevan tarkastelukaudella erittäin hidasta. Skenarioin tuotantoluvut on esitettä taulukossa 9.

<table>
<thead>
<tr>
<th>Puutavaralaji</th>
<th>2003</th>
<th>2010</th>
<th>2015</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sahatavara, 1000 m³</td>
<td>13 479</td>
<td>11 000</td>
<td>10 000</td>
<td>10 000</td>
</tr>
<tr>
<td>Vaneri, 1000 m³</td>
<td>1 259</td>
<td>1 330</td>
<td>1 350</td>
<td>1 380</td>
</tr>
<tr>
<td>Lastulevy, 1000 m³</td>
<td>416</td>
<td>440</td>
<td>450</td>
<td>460</td>
</tr>
<tr>
<td>Kuitulevy, 1000 m³</td>
<td>186</td>
<td>200</td>
<td>200</td>
<td>210</td>
</tr>
</tbody>
</table>

Puutavarateollisuuden energiankäyttöluvut on esitetty muun teollisuuden mukana.

3.2.1.2 Metallien valmistus

Rauta- ja terästeollisuus

Suomen terästeollisuuden vuotuinen tuotantokapasiteetti on nykyisin raakateräksellä mitattuna noin 5 milj. tonnia. Siitä runsas kolme neljäsosa tuotetaan masuuniteknologiailla integroiduissa terästehtaisissa, jotka käyttävät sekä malmia että romua raaka-aineenaan. Noin neljännes tuotannosta syntyy sähköaineprosesseissa, jossa tärkeimmät raaka-aineet ovat romu, ferrokromi ja seosmetallit. Raakateräksen tuotantokapasiteetin arvioidaan nousuvan vuoteen 2010 mennessä noin neljänneksellä eli miljoonalla tonnilla rakenteilla olevien laajennusten ja julkistettujen inves-
tointisuunnitelmien perusteella. Tämän jälkeen tuotannon arvellaan kasvavan aikaisempaa selvästi hitaammin. Tuotantokapasiteetti kasvaa sekä malmipohjaisessa että romupohjaisessa tuotannossa. Merkittävin lisäys on odotettavissa ruostumattoman teräksen tuotannossa. Malmipohjaisessa teräksen tuotannossa käytetään masuunissa kivihillestä valmistettua koksia malmissa ol-
van raudan pelkistämiseen. Osa kokkista voidaan korvata myös erikoisraskaalla öljyllä yms. Edellä mainittujen aineiden käytölle pelkistäjänä ei ole nykyisin taloudellista vaihtoehtoa.

Pelkistysaineiden ja energian käyttö tuotettua terästonnia kohden ovat laskeneet 1980-luvun loppuvuosiin saakka, minkä jälkeen tehostumisvauhti on hidastunut. Tehostuminen on saavutta-
ut tason, jonka alentaminen on erittäin vaikeaa. WM-skenariossa pelkistysaineiden käyttö lisäntyisi näin ollen lähes samassa suhteessa kuin malmipohjainen terästutotanto Suomessa.

Ruostumattoman teräksen nykyinen vuosituotanto Suomessa on noin 600 000 tonnia aihioina. Tuotannon pääraka-aineet ovat rauta- ja teräsromu sekä ferrokromi. Kromia on normaalisti hiukan alle 20 prosenttia ja nikkeliä noin 10 prosenttia. Haponkestävää teräksessä on vielä

Muiden metallien valmistus

Tärkein energialähde värimetallien tuotannossa on sähkö, jota vuonna 2003 käytettiin noin 2,6 TWh. Tästä noin 2/3 kului ferrokromin ja sinkin tuotannossa. Sinkin, nikkelin ja kuparin valmistuksessa suurin osa tarvittavasta sähköstä kuuluu elektrolyysissä. Sähkö on erittäin merkittävä kustannustekijä värimetallien tuotannossa. Sähkö käyttö lisääntyy tuotannon kasvun seurauksena, vaikka lopputuoteysikköä kohden lasketun sähkökäytön arvioidaan alenevan.

<table>
<thead>
<tr>
<th>Energialähde</th>
<th>2003</th>
<th>2010</th>
<th>2025</th>
<th>Indeksi, 2003=100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sähkö, TWh</td>
<td>5,2</td>
<td>7,1</td>
<td>8,3</td>
<td>136</td>
</tr>
<tr>
<td>Polttoaineet, PJ</td>
<td>74,1</td>
<td>86,7</td>
<td>95,5</td>
<td>117</td>
</tr>
<tr>
<td>Öljy</td>
<td>11,7</td>
<td>13,4</td>
<td>14,2</td>
<td>114</td>
</tr>
<tr>
<td>Kivihiili ja koksi</td>
<td>51,7</td>
<td>59,3</td>
<td>67,9</td>
<td>115</td>
</tr>
<tr>
<td>Maakaasu</td>
<td>2,8</td>
<td>3,7</td>
<td>3,8</td>
<td>133</td>
</tr>
<tr>
<td>Reaktiolämpö</td>
<td>2,2</td>
<td>2,5</td>
<td>2,7</td>
<td>110</td>
</tr>
<tr>
<td>Muut polttoaineet</td>
<td>5,6</td>
<td>7,9</td>
<td>7,0</td>
<td>140</td>
</tr>
</tbody>
</table>

*Sisältää myös masuuni- ja koksaamokaasun

3.2.1.3 Kemiateollisuus

Kemiateollisuus on tarkasteluisissa jaettu seuraaviin kolmeen pääryhmään:

- kemikaalien valmistus
- kumi- ja muovituotteiden valmistus
- öljynjalostus

Lannoitteiden kysynnän odotetaan niin Suomessa kuin muuallakin EU-alueella kasvavan tarkastelukaudella hyvin hitaasti EU:n yhteisen maatalouspolitiikan linjausten seurauksena. Lannoitteiden tuotannon Suomessa arvioidaan noudattavan eurooppalaisen kysynnän kehityslinjoja. Suomessa kemikaalien tuotannon kasvun arvioidaan syntyvän lähinnä metsäteollisuuden käyttämien kemikaalien valmistuksesta.

Kemiateollisuuden energiantensiivisillä aloilla energiakustannukset ovat merkittävä kustannustekijä. Suomen tuotantokoneisto on suhteellisen uutta, minkä vuoksi energiatehokkuuden on todettu olevan Suomessa kansainvälisesti vertaillen hyvää.

<table>
<thead>
<tr>
<th>Energialähde</th>
<th>2003</th>
<th>2010</th>
<th>2025</th>
<th>Indeksi, 2003=100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sähkö, TWh</td>
<td>4,6</td>
<td>5,2</td>
<td>5,5</td>
<td>112</td>
</tr>
<tr>
<td>Polttoaineet, PJ</td>
<td>21,2</td>
<td>24,1</td>
<td>26,3</td>
<td>114</td>
</tr>
<tr>
<td>Öljy</td>
<td>8,1</td>
<td>10,1</td>
<td>11,8</td>
<td>125</td>
</tr>
<tr>
<td>Kivihiili ja koksi</td>
<td>2,4</td>
<td>2,8</td>
<td>3,0</td>
<td>115</td>
</tr>
<tr>
<td>Maakaasu</td>
<td>2,0</td>
<td>2,3</td>
<td>2,6</td>
<td>115</td>
</tr>
<tr>
<td>Reaktiolämpö</td>
<td>5,0</td>
<td>5,0</td>
<td>5,0</td>
<td>101</td>
</tr>
<tr>
<td>Muut polttoaineet</td>
<td>3,7</td>
<td>3,9</td>
<td>3,9</td>
<td>107</td>
</tr>
</tbody>
</table>

Taulukko 12. Öljynjalostuksen sähkön (TWh) ja polttoaineiden (PJ) käyttö sekä käytön kehitys WM-skenaariossa 2003–2025.

<table>
<thead>
<tr>
<th>Energialähde</th>
<th>2003</th>
<th>2010</th>
<th>2025</th>
<th>Indeksi, 2003=100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sähkö, TWh</td>
<td>0,9</td>
<td>1,4</td>
<td>1,3</td>
<td>150</td>
</tr>
<tr>
<td>Polttoaineet, PJ</td>
<td>46,2</td>
<td>53,2</td>
<td>53,2</td>
<td>115</td>
</tr>
<tr>
<td>Öljy</td>
<td>29,6</td>
<td>35,7</td>
<td>35,7</td>
<td>121</td>
</tr>
<tr>
<td>Kivihiili ja koksi</td>
<td>0,01</td>
<td>0,02</td>
<td>0,02</td>
<td>124</td>
</tr>
<tr>
<td>Maakaasu</td>
<td>16,6</td>
<td>17,4</td>
<td>17,4</td>
<td>105</td>
</tr>
</tbody>
</table>

3.2.1.4 Muu teollisuus

Tuotannon kehitysarviot ja energianintensiiteet vaihtelevat muun teollisuuden toimialojen välillä voimakkaasti. Nopeimmin kasvava toimiala on sähkötekninen teollisuus, joka samalla on myös vähiten energiaa tarvitseva toimiala koko teollisuudessa. Tuotannon kehitysarviot tarkastelukaudella toimialoittain on esitetty taulukossa 13.
Polttoainekäyttö on elintarviketeollisuutta, rakennusaineteollisuutta ja kaivannaistoimintaa lukuun ottamatta lähinä rakennusten lämmitykseen käytettyä energiaa, joka ei kasva samassa suhteessa tuotannon kanssa.

Energian käytön tuoteyksikköä kohden arvioidaan muussa teollisuudessa alenevan vuosina 2003–2010 noin 0,4 prosenttia vuodessa. Polttoaineiden ominaiskulutus alenee nopeammin kuin sähkön, sillä sähkö korvaa polttoaineita tuotantoprosesseissa. Erityisen selvästi tämä kehitys on näkynyt elintarviketeollisuudessa ja sen odotetaan edelleen jatkuvan.

3.2.1.5 Yhteenveto teollisuuden energiankäytöstä

Taulukko 15. Teollisuuden polttoainekäyttö ja osuudet kokonaiskäytöstä WM-skenaariossa 2003–2025, PJ.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Öljy</td>
<td>88,1</td>
<td>103,9</td>
<td>107,4</td>
<td>19</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>Kivihiili</td>
<td>9,7</td>
<td>9,7</td>
<td>9,9</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Koksi</td>
<td>23,8</td>
<td>27,4</td>
<td>31,5</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Maakaasu</td>
<td>72,3</td>
<td>81,5</td>
<td>82,4</td>
<td>16</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>Turve</td>
<td>20,6</td>
<td>26,7</td>
<td>26,2</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Masuuni- ja koksaamokaasut, jätelämpö</td>
<td>32,8</td>
<td>35,5</td>
<td>38,1</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Jätelemet</td>
<td>147,0</td>
<td>169,3</td>
<td>193,4</td>
<td>32</td>
<td>32</td>
<td>34</td>
</tr>
<tr>
<td>Jätepuu, kuori ja metsähake</td>
<td>63,1</td>
<td>72,2</td>
<td>80,1</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Muut</td>
<td>3,1</td>
<td>3,2</td>
<td>3,3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Yhteensä</td>
<td>460,5</td>
<td>530,0</td>
<td>572,2</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Toimiala</th>
<th>TWh</th>
<th>Osuudet, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2003</td>
<td>2010</td>
</tr>
<tr>
<td>Kaivannaistoiminta</td>
<td>0,6</td>
<td>0,5</td>
</tr>
<tr>
<td>Elintarvike</td>
<td>1,6</td>
<td>1,6</td>
</tr>
<tr>
<td>Tevanake</td>
<td>0,3</td>
<td>0,3</td>
</tr>
<tr>
<td>Puutavareoteollisuus</td>
<td>1,6</td>
<td>1,3</td>
</tr>
<tr>
<td>Massa- ja paperiteollisuus</td>
<td>24,7</td>
<td>28,8</td>
</tr>
<tr>
<td>Graafinen</td>
<td>0,4</td>
<td>0,5</td>
</tr>
<tr>
<td>Kumi- ja muovituotteiden valmistus</td>
<td>0,8</td>
<td>0,9</td>
</tr>
<tr>
<td>Öllynjalostus</td>
<td>0,9</td>
<td>1,4</td>
</tr>
<tr>
<td>Kemiantoollisuus</td>
<td>4,6</td>
<td>5,2</td>
</tr>
<tr>
<td>Rakennusaine</td>
<td>0,9</td>
<td>1,1</td>
</tr>
<tr>
<td>Metallien valmistus</td>
<td>5,2</td>
<td>7,1</td>
</tr>
<tr>
<td>Metallituotteet</td>
<td>2,6</td>
<td>3,2</td>
</tr>
<tr>
<td>Muu tuotanto(^1)</td>
<td>0,9</td>
<td>0,9</td>
</tr>
<tr>
<td>Yhteensä</td>
<td>45,0</td>
<td>52,8</td>
</tr>
</tbody>
</table>

\(^1\) Sisältää metallituotteiden, koneiden, sähkötukkisten tuotteiden ja kulkuneuvojen valmistuksen
\(^2\) Sisältää toimialoiille jakamattoman kulutuksen.
3.2.2 Lämmitys

Rakennuskannan kehitys

Koko talonrakennuskannan tilavuusarvio vuonna 2003 oli noin 1 850 miljoonaa kuutiota. Tässä raportissa käsitellään pääasiallisesti asuin- ja palvelurakennuksia eli noin 1 100 miljoonan koottion rakennuskantatilavuutta, joka edustaa 60–65 prosenttia koko rakennuskannasta. Tästä runsas 700 miljoonaa kuutiota ovat asuinrakennuksia ja noin 400 miljoonaa kuutiota palvelurakennuksia.

Talonrakennuskantaa muuttavat:
− uudistuotanto ja laajennukset
− poistuma ja
− rakennusten korjaaminen ja käyttötarkoitusmuutokset.

Asuntojen koko kotitaloutta kohden kasvaa elintason noustessa, mutta muiden Pohjoismaiden nykyistä asumisväljyyttä ei Suomessa saavuteta koko tarkastelukaudena.

Taulukko 17. Rakennusten lämmityksen hyötyenergia WM-skenaariossa ja lämmönlähteiden osuudet kokonaiskulutuksesta, GWh ja %.

<table>
<thead>
<tr>
<th>Lämmönlähde</th>
<th>Hyötyenergia, GWh</th>
<th>Osuudet, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2003</td>
<td>2010</td>
</tr>
<tr>
<td>Kaukolämpö</td>
<td>28 133</td>
<td>30 119</td>
</tr>
<tr>
<td>Öljy</td>
<td>10 846</td>
<td>9 268</td>
</tr>
<tr>
<td>Kaasu</td>
<td>603</td>
<td>556</td>
</tr>
<tr>
<td>Puu</td>
<td>6 665</td>
<td>6 768</td>
</tr>
<tr>
<td>Turve</td>
<td>93</td>
<td>95</td>
</tr>
<tr>
<td>Briketit ja pelletit</td>
<td>42</td>
<td>172</td>
</tr>
<tr>
<td>Lämpöpumput</td>
<td>1 908</td>
<td>2 548</td>
</tr>
<tr>
<td>Sähkölämpö</td>
<td>8 814</td>
<td>9 137</td>
</tr>
<tr>
<td>Muut</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Yhteensä</td>
<td>57 121</td>
<td>58 680</td>
</tr>
</tbody>
</table>

Rakennusten lämmön kulutus kasvaa rakensuskannan kasvuun seurauksena vajaan 0,5 prosentin vuosivauhdilla 2003–2025. Rakennuskannan uusiutumisesta aiheutuvan ominaiskulutuksen alenneminen hidastaa lämmitystarpeen kasvua.

3.2.3 Kotitalouksien ja palvelusektorin sähkön kulutus

Tässä luvussa tarkastellaan kotitalouksien ja palvelutoimialojen sähkön käyttöä. Asuntojen ja palvelurakennusten lämmitysenergian (ml. sähkölämmitys) kulutusta on käsitelty luvussa 3.2.2 Kotitalouksien ja tuotantotoiminnan liikennepolttoaineiden kulutusta tarkastellaan luvussa 3.2.4.

3.2.3.1 Kotitaloudet ja asuminen

Kotitalouksien sähkönkulutukseen luetaan kotitalouskoneiden ja -laitteiden sähkön käyttöä. Asuntojen ja palvelurakennusten lämmitysenergian (ml. sähkölämmitys) kulutusta on käsitelty luvussa 3.2.2 Kotitalouksien ja tuotantotoiminnan liikennepolttoaineiden kulutusta tarkastellaan luvussa 3.2.4.

Kotitalouksien tulojen kasvaessa myös kotitaloukskoneiden varanto lisääntyy ja uudistuu. Useissa kotitalouksissa on jo nykyisin peruslaitteisto, joten kotitaloukskoneiden määrä kotitaloutta kohden ei kasva samassa tahdissa kuin tulot. Useiden laitteiden kysynnän kasvu hidastuu tarkastelu-jaksolla. Tulevaisuuden laitekantaa arvioitaessa on huomioida laitetyyppitäin niiden nykyinen yleisyys kotitalouksissa ja arvioida kotitaloustyyppien perusteella niiden yleisyttä. Kotitalouk-
sien määrän perusteella on sen jälkeen johdettu laitekanta tarkastelukaudelle. Perinteisten kotitalouskoneiden ohelle tulee luonnollisesti aina uusia laitteita, jotka lisäävät sähkönkulutusta. Talailosten, vielä tuntemattomien laiteiden, markkinoille tulo on laskelmissa otettu huomioon, mutta niiden merkityksen kotitaloussähkön kulutukselle odotetaan olevan suhteellisen vähäinen.

Uusien EU-direktiivien myötä energiatehokkuudeltaan heikoimpia laitteita poistuu markkinoilta, jolloin uusien myynnissä olevien laitteiden keskimääräinen energiatehokkuus paranee. WM-skennariossa kotitalouskoneiden ja -laitteiden energiatehokkuuden lisäys tuleekin lähinnä EU-tason normien ja standardien vaikutuksen kautta, sillä tehtyjen vero-oletusten vuoksi taloudellisia kannustimia ei juuri ole. Kotitalouslaitteiden energiatehokkuuden arvioidaan paranee tarkastelukaudella laiteryhmästä riippuen 0,2 – 0,6 prosenttia vuodessa.

Vapaa-ajan asuntojen sähkön käyttö oli vuonna 2003 0,5 TWh. Loma-asuntojen lukumäärän ja varustetason kasvun myötä sähkön käyttö näissä kohteissa arvioidaan lisääntyvän vuosina 2003–2025 noin kaksi % vuodessa.

Taulukko 18. Asumisen sähkön kulutus sekä kulutuksen kehitys WM-skennariossa vuosina 2003 – 2025, TWh.

<table>
<thead>
<tr>
<th>Kuluttusektori</th>
<th>2003</th>
<th>2010</th>
<th>2025</th>
<th>Indexi, 2003=100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TWh</td>
<td></td>
<td></td>
<td>2010</td>
</tr>
<tr>
<td>Kotitaloussähkön</td>
<td>10,2</td>
<td>11,3</td>
<td>12,7</td>
<td>111</td>
</tr>
<tr>
<td>Kiinteistösähkön</td>
<td>1,9</td>
<td>2,1</td>
<td>2,4</td>
<td>110</td>
</tr>
<tr>
<td>Loma-asunnot</td>
<td>0,5</td>
<td>0,5</td>
<td>0,6</td>
<td>100</td>
</tr>
<tr>
<td>Yhteensä</td>
<td>12,5</td>
<td>13,9</td>
<td>15,7</td>
<td>109</td>
</tr>
</tbody>
</table>

Palvelut

<table>
<thead>
<tr>
<th>Kulutussektori</th>
<th>2003</th>
<th>2010</th>
<th>2025</th>
<th>Indeksi, 2003=100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palvelut ja julkinen kulutus</td>
<td>13,7</td>
<td>15,1</td>
<td>16,4</td>
<td>110</td>
</tr>
</tbody>
</table>

Samoin kuin kotitalouksissa palveluiden sähkönkäyttö on pitkälle sidoksissa käyttössä olevien koneiden ja laitteiden määrään ja niiden teknisiin ominaisuuksiin.

3.2.4 Liikenne

Liikennettä koskevien skenaarioiden taustalla on oletuksia talouden ja sen kuljetusintensiteetin, alue- ja yhdyskuntarakenteen, liikennemuotojen markkinaosuuden, teknologian, väestön tulo- ja ikäjakauman, työmarkkinoiden sekä elintarjoalojen, kuten asumisen ja vapaa-ajan vienton kehityksestä. Taustatekijöinä on käytetty muiden yhteiskuntasektoreiden kanssa yhteisiä ennusteita niiltä osin, kuin se on ollut mahdollista ja muilta osin on käytetty virallisten tilastojen tietoja, tutkimuksia ja asiantuntija-arvioita.

kasvaa voimakkaammin kuin bensiinin ja ylittääkin bensiinin kulutuksen ennen kuluvaan vuosikaudeen puoliväliä.

Lentopetrolin kulutus kasvaa selvästi nopeimmin, keskimäärin lähes neljä prosenttia vuodessa. Polttoaineiden kulutus raide- ja vesiliikenteessä pysyy likimain nykytasolla. Sähkön kulutus rai
deliikenteessä on nykyisin noin 0,5 TWh ja sen odotetaan kasvavan jonkin verran. Koko liikenteen energiankulutus kasvaa varsin miltillisesti eli keskimäärin alle yhden prosentin vuodessa.

*Taulukko 20. Liikenteen energiankulutus polttoaineittain sekä kulutuksen kehitys WM-
skenaariossa 2003–2025, PJ.*

<table>
<thead>
<tr>
<th>Polttoaine</th>
<th>2003</th>
<th>2010</th>
<th>2025</th>
<th>2010</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bensiini</td>
<td>79,6</td>
<td>77,1</td>
<td>71,6</td>
<td>97</td>
<td>90</td>
</tr>
<tr>
<td>Diesel</td>
<td>81,9</td>
<td>94,0</td>
<td>94,2</td>
<td>115</td>
<td>115</td>
</tr>
<tr>
<td>Kevyt polttoöljy</td>
<td>6,1</td>
<td>5,9</td>
<td>5,8</td>
<td>96</td>
<td>94</td>
</tr>
<tr>
<td>Raskas polttoöljy</td>
<td>2,3</td>
<td>2,3</td>
<td>2,2</td>
<td>103</td>
<td>96</td>
</tr>
<tr>
<td>Lentopetrol ja -bensiini</td>
<td>6,1</td>
<td>7,0</td>
<td>8,3</td>
<td>114</td>
<td>135</td>
</tr>
<tr>
<td>Muut polttoaineet</td>
<td>0,3</td>
<td>0,6</td>
<td>0,9</td>
<td>207</td>
<td>302</td>
</tr>
<tr>
<td>Yhteensä</td>
<td>176,3</td>
<td>186,9</td>
<td>183,0</td>
<td>106</td>
<td>104</td>
</tr>
</tbody>
</table>

3.2.5 Muut

Maatalouden tuotanto ei kasva WM-skenaariossa. Sähkön käyttö laskee hieman nykyisestä
0,8 TWh:sta. Polttoaineiden kokonaiskäyttö vähenee maataloudessa nykyisestä 32,1 PJ:sta 30,8 PJ:een vuoteen 2010 mennessä ja edelleen 29,3 PJ:een vuoteen 2025 mennessä. Puun sekä mui
den biopolttoaineiden käyttö kasvaa, kun taas polttoöljyjen käyttö vähenee.

Rakennustoiminnan polttoainekäyttö on nykyisin noin 4 PJ ja sen ennakoidaan säilyvän likimain
nykytasolla. Sähkön käyttö, joka on nykyisin noin 0,2 TWh, kasvaa hieman.

*Taulukko 21. Maatalouden energiankulutus polttoaineittain sekä kulutuksen kehitys WM-
skenaariossa 2003–2025, PJ.*

<table>
<thead>
<tr>
<th>Polttoaine</th>
<th>2003</th>
<th>2010</th>
<th>2025</th>
<th>2010</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kevyt polttoöljy</td>
<td>23,8</td>
<td>22,7</td>
<td>21,5</td>
<td>95</td>
<td>91</td>
</tr>
<tr>
<td>Raskas polttoöljy</td>
<td>2,9</td>
<td>2,6</td>
<td>2,0</td>
<td>88</td>
<td>69</td>
</tr>
<tr>
<td>Maakaasu</td>
<td>0,5</td>
<td>5,0</td>
<td>0,5</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>Puu</td>
<td>4,8</td>
<td>4,8</td>
<td>5,0</td>
<td>104</td>
<td>104</td>
</tr>
<tr>
<td>Lämpöpumput</td>
<td>0,0</td>
<td>0,0</td>
<td>0,2</td>
<td>193</td>
<td>804</td>
</tr>
<tr>
<td>Yhteensä</td>
<td>32,1</td>
<td>30,8</td>
<td>29,3</td>
<td>96</td>
<td>91</td>
</tr>
</tbody>
</table>
Taulukko 22. Rakennustoiminnan työkoneiden polttoainekulutus sekä kulutuksen kehitys WM-skenaariossa 2003–2025, PJ.

<table>
<thead>
<tr>
<th>Polttoaine</th>
<th>PJ 2003</th>
<th>PJ 2010</th>
<th>PJ 2025</th>
<th>Indeksi, 2003=100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kevyt polttoöljy</td>
<td>18,2</td>
<td>17,5</td>
<td>18,6</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>102</td>
</tr>
</tbody>
</table>

PJ
Indeksi, 2003=100
3.3 Sähkön kokonaiskulutus ja hankinta

Sähkön kokonaiskulutus, sisältäen sähkön siirron ja jakelun häviöt, kasvaa vuoden 2003 85,2 TWh:sta 95,5 TWh:iin vuoteen 2010 mennessä ja noin 108 TWh:iin vuoteen 2025 mennessä. Keskimääräinen vuotuinen kasvu on noin 1,2 prosenttia eli hieman enemmän kuin primäärienergian kulutuksen kasvu.

Taulukko 23. Sähkön kulutus sektoreittain sekä osuudet kokonaiskulutuksesta sektoreittain WM-skenaariossa vuosina 2003-2025, TWh ja %.

<table>
<thead>
<tr>
<th>Sektori</th>
<th>2003</th>
<th>2010</th>
<th>2025</th>
<th>2003</th>
<th>2010</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teollisuus</td>
<td>45,0</td>
<td>52,8</td>
<td>62,2</td>
<td>53</td>
<td>55</td>
<td>56</td>
</tr>
<tr>
<td>Asuminen</td>
<td>12,5</td>
<td>13,9</td>
<td>15,7</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Sähkölämmitys</td>
<td>8,8</td>
<td>9,1</td>
<td>9,1</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Palvelut</td>
<td>13,7</td>
<td>15,1</td>
<td>16,4</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Muut</td>
<td>1,7</td>
<td>1,7</td>
<td>1,5</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Häviöt</td>
<td>3,4</td>
<td>3,0</td>
<td>2,9</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Kokonaiskulutus</td>
<td>85,2</td>
<td>95,5</td>
<td>107,9</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Palvelutoimialojen tuotanto kasvaa suhteellisen voimakkaasti, mikä näkyy myös sähkönkulutuksen huomattavana kasvunä WM-skenaariossa. Lämmitykseen käytetyn sähkön määrä ei tarkastelukaudella kasva merkittävästi uusien lämmitysmuotojen kasvuttaessa markkinaosuuttaan.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Teollisuus</td>
<td>8,5</td>
<td>5,0</td>
</tr>
<tr>
<td>Kotitaloudet (asuminen)</td>
<td>1,9</td>
<td>1,0</td>
</tr>
<tr>
<td>Sähkölämmitys</td>
<td>0,2</td>
<td>0</td>
</tr>
<tr>
<td>Palvelut</td>
<td>1,5</td>
<td>0,8</td>
</tr>
<tr>
<td>Muut</td>
<td>0,0</td>
<td>-0,2</td>
</tr>
<tr>
<td>Yhteensä</td>
<td>12,0</td>
<td>6,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tuotantotapa</th>
<th>2003</th>
<th>2010</th>
<th>2025</th>
<th>2003</th>
<th>2010</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesivoima</td>
<td>9,5</td>
<td>13,3</td>
<td>14,0</td>
<td>11</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>Tuulivoima</td>
<td>0,1</td>
<td>0,5</td>
<td>1,5</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Yhteistuotanto, kaukolämpö</td>
<td>15,1</td>
<td>18,7</td>
<td>22,6</td>
<td>18</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>Yhteistuotanto, teollisuus</td>
<td>12,7</td>
<td>15,0</td>
<td>18,1</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>Massa- ja paperiteollisuus ja muut</td>
<td>11,5</td>
<td>13,8</td>
<td>16,9</td>
<td>13</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>Oiljynjalostus</td>
<td>1,1</td>
<td>1,2</td>
<td>1,3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ydinvoima</td>
<td>21,8</td>
<td>31,1</td>
<td>34,6</td>
<td>26</td>
<td>33</td>
<td>32</td>
</tr>
<tr>
<td>Tavanomainen lauhde</td>
<td>21,0</td>
<td>8,9</td>
<td>14,1</td>
<td>25</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Tuotanto</td>
<td>80,4</td>
<td>87,5</td>
<td>104,9</td>
<td>94</td>
<td>92</td>
<td>97</td>
</tr>
<tr>
<td>Nettotuonti</td>
<td>4,9</td>
<td>8,0</td>
<td>3,0</td>
<td>6</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Hankinta</td>
<td>85,2</td>
<td>95,5</td>
<td>107,9</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

3.4 Energian kokonaiskulutus

<table>
<thead>
<tr>
<th>Energialähde</th>
<th>Primäärienergia, PJ</th>
<th>Osuudet, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2003</td>
<td>2010</td>
</tr>
<tr>
<td>Liikennepoltonesteet</td>
<td>161,5</td>
<td>171,1</td>
</tr>
<tr>
<td>Muu öljy</td>
<td>212,0</td>
<td>216,1</td>
</tr>
<tr>
<td>Kivihiili</td>
<td>194,7</td>
<td>103,5</td>
</tr>
<tr>
<td>Maakaasu</td>
<td>169,2</td>
<td>188,9</td>
</tr>
<tr>
<td>Turve</td>
<td>98,4</td>
<td>92,9</td>
</tr>
<tr>
<td>Puupolttoaineet</td>
<td>289,2</td>
<td>316,3</td>
</tr>
<tr>
<td>Ydinvoima</td>
<td>238,1</td>
<td>339,4</td>
</tr>
<tr>
<td>Vesivoima</td>
<td>34,4</td>
<td>47,7</td>
</tr>
<tr>
<td>Tuulivoima</td>
<td>0,3</td>
<td>1,7</td>
</tr>
<tr>
<td>Muut</td>
<td>72,1</td>
<td>78,7</td>
</tr>
<tr>
<td>Sähkön tuonti</td>
<td>17,5</td>
<td>28,8</td>
</tr>
<tr>
<td>Kokonaiskulutus</td>
<td>1487,4</td>
<td>1585,2</td>
</tr>
</tbody>
</table>
3.5 Kasvihuonekaasupäästöt WM-skenaarioissa

3.5.1 Polttoaineperäiset hiilidioksidipäästöt

Taulukossa 27 on esitetty WM-skenaario laskelmien mukaiset päästöt sektoreittain. Taulukossa on omiksi sektoreikseen otettu lauhdesähkön tuotanto ja kaukolämpö, johon kuuluvat sekä erilliset lämpökeskukset että yhdistetyn lämmön ja sähkön tuotantolaitokset. Samoin teollisuus sisältää teollisuuden vastapainevoiman ja muun prosessisähkön tuotannon päästöt, mutta ei osotosähkön tuotannon päästöjä.

Tonnimääräisesti eniten kasvavat teollisuuden ja kaukolämpösektorin päästöt. Teollisuuden päästöt kasvavat lähinnä perusmetallien tuotannon lisääntyneen tuotantokapasiteetin mahdollistaman tuotannon kasvu myötä. Päästöt kasvavat teollisuus toimialoista myös metsäteollisuudessa tuotannon kasvu myötä.

Kaukolämmono ja kaukolämpövoiman päästöt kasvavat, mutta vastaavasti talokohtaisen lämmityksen päästöt pienenevät. Tämä johtuu siitä, että vaikka lämmitysenergian kulutus kasvaa edelleenkin, siirtyy lämpö tuotettavaksi aluelämpökeskuksissa ja kaukolämpövoimalaitoksissa. Myös sähkölämmityksen yleistyminen vähentää talokohtaisen lämmityksen päästöjä, mutta lisää niitä sähköntuotannossa.

Fossiilisten polttoaineiden käytössä on mukana teollisuusprosessiin liittyvä, vaikeasti korvattavia polttoaineita. Tällaista on mm. koksin käyttö, sillä teräksen valmistuksessa se on polttoaineena toimimisen lisäksi lopputuotteeseen sitoutuva raaka-aine. Toinen esimerkki on öljynjalostuksen sivutuotteet, kuten jalostamoakaasut. Jalostamoissa raakaöljystä saadaan öljytuotteiden lisäksi esim. jalostamokaasuja, joita sitten käytetään hyödyksi energiantuotannossa.

Erinäisten työkoneiden kasvihuonekaasupäästöjä on tarkasteltu sekä ympäristöministeriön että maa- ja metsätalousministeriön selvityksissä. Työkoneet jakautuvat usealle sektorille: maatalouden koneet, teollisuuden trukit ja kuormaajat, maanrakennustoinnin koneet, diesel- ja bensiinikäyttöiset siirrettävät työkoneet sähkögeneraattoreista moottorisoihin ja ruohonleikkureihin. Yhteensä niiden kasvihuonekaasupäästöt ovat noin 2,6 Mt CO₂-ekv. ja niiden arvioidaan säilyvän samalla tasolla.

<table>
<thead>
<tr>
<th>Sektori</th>
<th>CO₂-päästöt, Mt</th>
<th>Osuudet, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lauhdutusvoima</td>
<td>5,3</td>
<td>17,5</td>
</tr>
<tr>
<td>Kaukolämpö</td>
<td>11,1</td>
<td>13,9</td>
</tr>
<tr>
<td>Teollisuus</td>
<td>18,8</td>
<td>19,9</td>
</tr>
<tr>
<td>Talokohtainen lämmitys</td>
<td>5,0</td>
<td>3,9</td>
</tr>
<tr>
<td>Liikenne</td>
<td>12,3</td>
<td>12,6</td>
</tr>
<tr>
<td>Muut</td>
<td>1,2</td>
<td>2,7</td>
</tr>
<tr>
<td>Yhteensä</td>
<td>53,7</td>
<td>70,5</td>
</tr>
</tbody>
</table>

Hiilidioksidin lisäksi muita Kioton pöytäkirjan käsittelemiä kasvihuonekaasuja ovat metaan ja dityppioksid sekä niin. Uudet kasvihuonekaasut ovat mm. suopelloilta, vedyn valmistuksesta ja kalkkikivien käsittelyssä. Muita Kioton pöytäkirjan ulkopuolella olevia kasvihuonekaasuja ovat mm. vesihöyry, erilaiset edellä mainittujen uusien kasvihuonekaasujen lisäksi olleet halogenoidut hiilivedet (mm. HCFC) ja otsoni (O₃). Monet muut kaasut (NOₓ, CO, VOC ja SO₂) aiheuttavat lisäksi epäsuoria kasvihuonekaasupäästöjä. Näitä pöytäkirjan ulkopuolella olevia kasvihuonekaasuja säännellään jo toisten sopimusten avulla tai niillä ei ole merkittävää vaikutusta.

3.5.2 Muut hiilidioksidipäästöt

Hiilidioksidipäästöistä valtaosa syntyy fossiilisten polttoaineiden ja turpeen poltosta. Muita CO₂-lähteitä ovat teollisuusprosessien päästöt, maatalousmaat ja hävikit.

Teollisuusprosessien päästöt syntyvät kalkkikiven (CaCO₃) polton ja vedyn valmistuksen yhteydessä. Nämä päästöt ovat olleet noin 1 Mt vuodessa ja nousevat öljynjalostuksen laajennuksen yhteydessä tapahtuvan vedynvalmistuksen lisääntymisen johdosta vuoden 2005 jälkeen tasolle 1,8 Mt.

Maatalousmaiden ilmoitut CO₂-päästöt ovat noin 2 Mt. Osa näistä muodostuu maatalousmaidon kalkituksessa käytettävien karbonattiyhdisteiden reagoidessa maaperässä. Turvepohjaisten peltojen viljelystä aiheutuu CO₂-päästöjä, mutta päästöluvuissa on suuria pinta-alaan ja päästökertoimiin liittyviä epävarmuuksia.

Suomen kansallisessa kasvihuonekaasujen inventaariossa ilmoitetut haihtumishävikit polttoaineista ovat noin 0,6 Mt CO₂:ta. Inventaariossa nämä ovat turvetuotantoalueiden haihtumapäästöjä, jotka muodostuvat turvetuotannossa käytössä olevien alueiden CO₂-päästöistä.

Lisäksi inventaariossa on hiilidioksidipäästöisä ilmoitettu kohta muut, joka oli 0,7 Mt vuonna 2003. Se tarkoittaa öljyutoteiden ja maakaasun ei-energiakäyttöä, eli päästöjä "varastoituneista energialähteistä", kuten muovien tai asfaltin öljyjä, joka kuitenkin hapettuu jossaan vaiheessa.

WM-skennariossa muiden kuin fossiilisten polttoaineiden ja turpeen poltosta syntyvien hiilidioksidipäästöjen arvioidaan säilyvän kutakuinkin muuttumattomina.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>hävikit/haihtumiset</td>
<td>0,6</td>
<td>0,6</td>
<td>0,6</td>
<td>0,6</td>
<td>24</td>
<td>21</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>teollisuusprosessit, kalkin käyttö</td>
<td>1,4</td>
<td>1,3</td>
<td>1,5</td>
<td>1,7</td>
<td>52</td>
<td>46</td>
<td>42</td>
<td>45</td>
</tr>
<tr>
<td>sementinvalmistus</td>
<td>0,7</td>
<td>0,7</td>
<td>0,7</td>
<td>0,9</td>
<td>26</td>
<td>23</td>
<td>21</td>
<td>23</td>
</tr>
<tr>
<td>raakaraudan valmistus</td>
<td>0,4</td>
<td>0,4</td>
<td>0,5</td>
<td>0,6</td>
<td>16</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>voimalaitosten rikinpoisto</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>kalkkikiven muu käyttö</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>teollisuusprosessit, vedyn valmistus</td>
<td>0,0</td>
<td>0,1</td>
<td>0,8</td>
<td>0,8</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>muut hävikit poltoainevarastoista</td>
<td>0,6</td>
<td>0,8</td>
<td>0,7</td>
<td>0,7</td>
<td>25</td>
<td>29</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>Yhteensä</td>
<td>2,6</td>
<td>2,9</td>
<td>3,6</td>
<td>3,8</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

3.5.3 Metaani (CH₄)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>jättehuolto</td>
<td>3,83</td>
<td>2,62</td>
<td>2,20</td>
<td>1,88</td>
<td>60</td>
<td>53</td>
<td>51</td>
<td>47</td>
</tr>
<tr>
<td>maatalous</td>
<td>2,10</td>
<td>1,77</td>
<td>1,56</td>
<td>1,56</td>
<td>32</td>
<td>35</td>
<td>36</td>
<td>39</td>
</tr>
<tr>
<td>poltoaineesta</td>
<td>0,49</td>
<td>0,56</td>
<td>0,53</td>
<td>0,54</td>
<td>8</td>
<td>11</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>liikennepoltoaineet</td>
<td>0,10</td>
<td>0,07</td>
<td>0,03</td>
<td>0,03</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>muu poltto¹</td>
<td>0,39</td>
<td>0,49</td>
<td>0,50</td>
<td>0,51</td>
<td>6</td>
<td>10</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>teollisuudesta (metalli, kemia)</td>
<td>0,01</td>
<td>0,01</td>
<td>0,02</td>
<td>0,02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Yhteensä</td>
<td>6,43</td>
<td>4,97</td>
<td>4,31</td>
<td>3,99</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

¹ sisältää lähinnä pienpoltosta aiheutuvan metaanin

Noin 10 prosenttia metaanipäästöistä eli noin 0,5 Mt CO₂-ekv. on peräisin poltoaineen epätäydellisestä palamisesta, joka on ongelma lähinnä tulisijoissa ja hyvin pienissä lämpökattiloissa. Voimalaitoksissa ja lämpökeskuksissa metaanipäästöt ovat hyvin pieniä. Noin puolet palamisen metaanipäästöistä aiheutuu puun poltattamisesta tulisijoissa.

Maakaasu on lähes pelkkää metaania. Suomessa maakaasun siirto- ja jakeluverkon vuodot ovat hyvin vähäiset, vain noin 0,02 prosenttia siirrettävää maakaasumäärää, noin 0,012 Mt CO₂-ekv.

WM-skenaariossa metaanipäästöjen arvioidaan edelleen alenevan, kun jätteistä peräisin olevat metaanipäästöt vähenevät tehtyjen jättehuoltopäätösten seurauksena. Ympäristöministeriön selvityksen mukaisesti nykykehityksellä jättehuollon metaanipäästöt olisivat vuonna 2010 noin 2,4 Mt CO₂-ekv. Maatalouden metaanipäästöt olisivat noin 2,4 Mt CO₂-ekv.
vuoden 1990 tasoa alempi. Myös energiantuotannon metaanipäästöjen arvioidaan säilyvän nykyisellään.

3.5.4 Dityppioksid (N₂O)

<table>
<thead>
<tr>
<th>Dityppioksid (N₂O)</th>
<th>CO₂-ekv., Mt</th>
<th>Osuudet, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maatalous</td>
<td>4,8</td>
<td>3,7</td>
</tr>
<tr>
<td>Maatalousmaiden päästöt</td>
<td>4,2</td>
<td>3,2</td>
</tr>
<tr>
<td>Lannankäsittely</td>
<td>0,7</td>
<td>0,5</td>
</tr>
<tr>
<td>Polttoprosessit</td>
<td>0,7</td>
<td>0,9</td>
</tr>
<tr>
<td>Typpihapon valmistus</td>
<td>1,6</td>
<td>1,4</td>
</tr>
<tr>
<td>Liikenne</td>
<td>0,2</td>
<td>0,5</td>
</tr>
<tr>
<td>Muut¹</td>
<td>0,2</td>
<td>0,2</td>
</tr>
<tr>
<td>Yhteensä</td>
<td>7,7</td>
<td>6,7</td>
</tr>
</tbody>
</table>

¹louottimet, jätteet

3.5.5 Fluoratut hiilivedyt tai F-kaasut

Kioton pöytäkirjassa on kolme fluorikaasua (F-kaasut), jotka ovat HFC- ja PFC-yhdisteet sekä rikkipfluorfluoruri (SF₆). F-kaasujen päästöt ovat kasvaneet viime vuosina voimakkaasti, kun yläilmakehän otsonkeroorsta tuhoavia CFC- ja HCFC-yhdisteitä on korvattu HFC-yhdisteillä. F-kaasupäästöt ovat nykyisin noin 0,6 Mt CO₂-ekvivalenttia. Päästöjen arvioidaan olevan vuonna 2010 WM-skenaariossa noin 1,0 Mt CO₂-ekv. Kiinteiden sekä ajoneuvoihin asennettujen ilmastointi- ja kylmälaitteiden yleistyminen aiheuttaa pääosan päästöistä. Niiden osuus nykyisistä uusien kaasujen päästöistä on 65 prosenttia.
3.6 WM-skenaarion herkkyystarkastelut

3.6.1 Herkkyystarkastelujen lähtökohdat ja tarkoitus

Kasvihuonekaasupäästöjen kehityksen tarkastelu osoittaa, että niiden arvioitu kehitys riippuu ratkaisevasti muutamasta tekijästä. Avainsanassa ovat oletukset energiavaltaisten toimialojen (massa- ja paperiteollisuuden, metallien valmistuksen ja kemian teollisuuden) tuotannon kasvunopeudesta sekä oletukset siitä, millä tuotantomuodoilla sähkön kulutuksen kasvu katetaan.

Seuraavissa luvuissa arvioidaan herkkyystarkastelujen avulla sitä, miten energian kulutus ja niiden myötä päästöt kehittyisivät, jos avainsanassa oleva energiavaltaisten toimialojen kasvunopeus poikkeaisi yhdellä prosenttiyksiköllä per vuosi WM-skenaariosta (WM+1% ja WM-1%).

Herkkyystarkasteluilla pyritään kuvaamaan siitä epävarmuusalueesta, johon muutokset energian kysynnän ja sitä kautta hiilidioksidipäästöjen kehitystä määrittävissä tekijöissä johtaisivat. Teollisuuden tuotannon kasvu on kansallisen energia- ja ilmastostrategian näkökulmasta suurelta osin annettu tekijä. Toisaalta voidaan kuitenkin todeta, että kansallisella energia- tai ilmastopoliittikalla voidaan vaikuttaa niihin kilpailukuukykytekijöihin, joilla on vaikutusta teollisuuden kehitysedellytyksiin.

3.6.2 Muutokset energiavaltaisten toimialojen kasvussa

WM-skenaariossa oletettiin, että energiavaltaisten teollisuustoimialojen – massa- ja paperiteollisuus, metallien valmistus ja peruskemian teollisuus öljynjalostus poislukien - tuotannot kehittyisivät seuraavasti:

Taulukko 32. Energiavaltaisten toimialojen kasvu WM-skenaariossa

<table>
<thead>
<tr>
<th>Toimiala</th>
<th>Kasvu, %/vuosi 2005-2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>massa- ja paperiteollisuus</td>
<td>1,6</td>
</tr>
<tr>
<td>metallien valmistus</td>
<td>1,2</td>
</tr>
<tr>
<td>kemian teollisuus (pl. öljynjalostus)</td>
<td>1,3</td>
</tr>
</tbody>
</table>

Jos tuotannon vuotuinen kasvu vuodesta 2005 eteenpäin olisikin näillä toimialoilla yhden prosenttiyksikkön suurempi tai pienempi kuin WM-skenaariossa, päädyttäisiin tuotannon tasoissa ja toimialojen sähkön kulutuksissa seuraavan asetelman mukaiseen tilanteeseen.
Taulukko 33. Energiavaltaisten toimialojen tuotanto ja sähkön kulutus vuonna 2025.

<table>
<thead>
<tr>
<th>Tuotanto 2025 kun 2003=1,00</th>
<th>Sähkön kulutus, TWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>WM</td>
<td>WM +1%/v</td>
</tr>
<tr>
<td>Massa- ja paperiteollisuus</td>
<td>1,52</td>
</tr>
<tr>
<td></td>
<td>35,8</td>
</tr>
<tr>
<td>Metallien valmistus</td>
<td>1,39</td>
</tr>
<tr>
<td></td>
<td>3,9</td>
</tr>
<tr>
<td>Kemian teollisuus</td>
<td>1,19</td>
</tr>
<tr>
<td></td>
<td>5,6</td>
</tr>
</tbody>
</table>

Kokonaispäästöjen osalta vertailu esitetään seuraavissa taulukoissa.

Taulukko 34. Kasvihuonekaasupäästöt WM-skenaariossa energiavaltaisten toimialojen kasvaessa 1%/v nopeammin, Mt CO₂-ekv.

<table>
<thead>
<tr>
<th></th>
<th>2003</th>
<th>2010</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kokonaispäästöt, Mt CO₂</td>
<td>85,5</td>
<td>82,6</td>
<td>97,3</td>
</tr>
<tr>
<td>Muutos vuodesta 2003, Mt</td>
<td>-</td>
<td>-3,0</td>
<td>11,8</td>
</tr>
<tr>
<td>Muutos vuodesta 2003, %</td>
<td>-</td>
<td>-3,5</td>
<td>13,8</td>
</tr>
</tbody>
</table>

Taulukko 35. Kasvihuonekaasupäästöt WM-skenaariossa energiavaltaisten toimialojen kasvaessa 1%/v hitaammin, Mt CO₂-ekv.

<table>
<thead>
<tr>
<th></th>
<th>2003</th>
<th>2010</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kokonaispäästöt, Mt CO₂</td>
<td>85,5</td>
<td>77,9</td>
<td>77,2</td>
</tr>
<tr>
<td>Muutos vuodesta 2003, Mt</td>
<td>-</td>
<td>-7,6</td>
<td>-8,3</td>
</tr>
<tr>
<td>Muutos vuodesta 2003, %</td>
<td>-</td>
<td>-8,9</td>
<td>-9,7</td>
</tr>
</tbody>
</table>

Laskelmissa on oletettu, että muiden toimialojen tuotannot (arvonlisäyksset) olisivat samat kuin WM-skenaariossa. Tällöin BKT:kin muuttuisi vain sillä määrällä millä nämä kolme toimialaa muuttuisivat. Koska näiden toimialojen osuus BKT:sta on vain 8 prosenttia, hidastuisi BKT:n vuotuinen kasvutahti WM:n 2,2 prosentista vain 0,1 prosenttiyksiköllä WM-1%-tarkastelussa. Todellisuudessa BKT kuitenkin supistuisi enemmän toimialojen keskinäisten riippuvuuksien ja niiden synnyttämien taloudellisten kerrannaisvaikutusten vuoksi.

3.6.3 Yhteenveto herkkystarkasteluista

Erityisen selvästi kasvihuonekaasut ylittäisivät Kioton velvoitetason, jos energiavaltaisten toimialojen tuotanto kasvaisi oletettua nopeammin.
Kuva Y. Kasvihuonekaasupäästöt perusurassa ja eri herkkyyystarkasteluilla, miljoonaa tonnia.

Taulukko 36. Kasvihuonekaasupäästöt perusurassa ja eri herkkyyystarkasteluilla, Mt CO₂-ekv.

<table>
<thead>
<tr>
<th>Herkkyyystarkastelu</th>
<th>2010</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>WM</td>
<td>79,3</td>
<td>85,4</td>
</tr>
<tr>
<td>WM energiaintensiivinen teollisuus +1%/v</td>
<td>82,6</td>
<td>97,3</td>
</tr>
<tr>
<td>WM energiaintensiivinen teollisuus –1%/v</td>
<td>77,9</td>
<td>77,2</td>
</tr>
</tbody>
</table>

3.7 Yhteen veto kokonaispääöstöistä

Energian tuotannon ja kulutuksen hiilidioksidipäästöjen sekä muiden Kioton pöytäkirjan mu-kaisten päästöjen kehitys WM-skenaariossa on käy ilmi kuvasta 5. WM-skenaarion kasvihuone- kasupäästöt (KHK-päästöt) on eritelyt päästökauppasektorin sektorin ja ei-päästökauppasektorin päästöihin.
Kuva 5. WM-skenaarion kasvihuonekaasujen kokonaispäästöt sekä päästöt sektorittain, milj. tonnia CO₂-ekv.

Taulukko 37. Päästökauppasektorin päästöt sektorittain WM-skenaariossa vuosina 1990-2025, Mt ja %.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lauhdevoima</td>
<td>5,3</td>
<td>17,5</td>
<td>7,1</td>
<td>11,3</td>
<td>17</td>
<td>35</td>
<td>16</td>
<td>22</td>
</tr>
<tr>
<td>Kaukolämpö</td>
<td>11,1</td>
<td>13,9</td>
<td>14,9</td>
<td>17,4</td>
<td>35</td>
<td>28</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>Massa- ja paperi</td>
<td>5,5</td>
<td>5,3</td>
<td>6,2</td>
<td>5,9</td>
<td>17</td>
<td>11</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>Rauta- ja teräs</td>
<td>4,8</td>
<td>6,0</td>
<td>6,8</td>
<td>7,4</td>
<td>15</td>
<td>12</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>Öljynjalostus</td>
<td>2,1</td>
<td>3,1</td>
<td>4,2</td>
<td>4,2</td>
<td>7</td>
<td>6</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Mineraalien valmistus</td>
<td>2,2</td>
<td>2,2</td>
<td>2,5</td>
<td>2,8</td>
<td>7</td>
<td>4</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Muu</td>
<td>0,6</td>
<td>1,5</td>
<td>1,6</td>
<td>1,7</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Yhteensä</td>
<td>31,5</td>
<td>49,4</td>
<td>43,2</td>
<td>50,7</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Päästökauppasektorin ulkopuolella päästöt ovat pysyneet vuoden tason alapuolella ja saman kaltaisen kehityksen odotetaan jatkuvat myös tulevina vuosina.
Taulukko 38. Ei-päästökauppasektorin päästöt ja päästöjen osuudet sektoreittain WM-skenaariossa vuosina 1990-2025, Mt ja %.

<table>
<thead>
<tr>
<th></th>
<th>Mt CO₂-ekv.</th>
<th></th>
<th>Mt CO₂-ekv.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂-päästöt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liikenne</td>
<td>12,0 12,5 13,3 13,0</td>
<td>31 33 35 35 50,7</td>
<td>45 58 55 59</td>
<td></td>
</tr>
<tr>
<td>Läämmitys</td>
<td>5,0 3,9 3,3 2,0</td>
<td>13 11 9 5</td>
<td>40 38 36 37 34,7</td>
<td>100 100 100 100</td>
</tr>
<tr>
<td>Muut sektorit</td>
<td>6,5 5,9 6,3 6,7</td>
<td>17 16 18 19</td>
<td>45 44 48 44</td>
<td></td>
</tr>
<tr>
<td>Muut päästöt</td>
<td>15,5 13,7 13,1 13,0</td>
<td>40 38 36 37 34,7</td>
<td>100 100 100 100</td>
<td></td>
</tr>
<tr>
<td>Yhteensä</td>
<td>39,0 36,1 36,0 34,7</td>
<td>100 100 100 100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Taulukossa 39 on koottu yhteen päästökauppasektorin ja ei-päästökauppasektorin kokonaispäästöt WM-skenaariossa. Päästöt kasvavat vain päästökauppasektorilla.

Taulukko 39. Kokonaispäästöt päästökauppa ja ei-päästökauppasektorilla sekä osuudet sektoreittain WM-skenaariossa vuosina 1990-2025, Mt ja %.

<table>
<thead>
<tr>
<th></th>
<th>Mt CO₂-ekv.</th>
<th></th>
<th>Mt CO₂-ekv.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PK-sektori</td>
<td>31,5 49,4 43,2 50,7</td>
<td>45 58 55 59 34,7</td>
<td>100 100 100 100</td>
<td></td>
</tr>
<tr>
<td>EPK-sektori</td>
<td>39,0 36,1 36,0 34,7</td>
<td>55 44 48 44</td>
<td>34,7 100 100 100 100</td>
<td></td>
</tr>
<tr>
<td>Yhteensä</td>
<td>70,5 85,5 79,3 85,4</td>
<td>100 100 100 100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WM-skenaarioon mukaisten päästöjen polttoainekohtainen tarkastelu näkyy taulukossa 40. Eri polttoaineiden osuus kokonaispäästöistä pysyy tarkasteluaudella melko tasaisena, joten mitään yksittäisiä lähteitä ei voi osoittaa päästöjen kasvun aiheuttajaksi.

Taulukko 40. Kasvihuonekaasupäästöt polttoaineittain WM-skenaariossa, Mt CO₂-ekv.

<table>
<thead>
<tr>
<th>Polttoaine</th>
<th>Mt CO₂ ekv.</th>
<th></th>
<th>Mt CO₂ ekv.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Liikennepolttonesteet</td>
<td>12,2 13,0 12,9 12,8 12,7</td>
<td>14 16 16 15 15 14</td>
<td>16 16 16 15 15</td>
<td></td>
</tr>
<tr>
<td>Muu öljy</td>
<td>15,0 15,2 14,8 14,4 14,0</td>
<td>18 19 19 17 16</td>
<td>18 19 19 17 16</td>
<td></td>
</tr>
<tr>
<td>Kivihilli</td>
<td>18,1 9,6 9,9 12,3 14,0</td>
<td>21 12 12 15 16</td>
<td>21 12 12 15 16</td>
<td></td>
</tr>
<tr>
<td>Koksi ja masuunikaasu</td>
<td>4,7 5,3 5,6 5,8 6,0</td>
<td>6 7 7 7 7</td>
<td>6 7 7 7 7</td>
<td></td>
</tr>
<tr>
<td>Maakaasu</td>
<td>9,4 15 10,9 11,2 11,5</td>
<td>11 13 14 14 13</td>
<td>11 13 14 14 13</td>
<td></td>
</tr>
<tr>
<td>Polttoturve</td>
<td>10,3 9,7 10,1 10,6 11,2</td>
<td>12 12 13 13 13</td>
<td>12 12 13 13 13</td>
<td></td>
</tr>
<tr>
<td>Muut polttoaineet</td>
<td>0,6 0,6 0,6 0,6 0,6</td>
<td>0,7 0,7 0,7 0,7 0,7</td>
<td>0,7 0,7 0,7 0,7 0,7</td>
<td></td>
</tr>
<tr>
<td>Muut CO₂</td>
<td>2,9 3,6 3,7 3,7 3,8</td>
<td>3 5 5 5 45</td>
<td>3 5 5 5 45</td>
<td></td>
</tr>
<tr>
<td>Muut päästöt</td>
<td>12,3 11,8 11,5 11,5 11,7</td>
<td>14 15 14 14 14</td>
<td>14 15 14 14 14</td>
<td></td>
</tr>
<tr>
<td>Yhteensä</td>
<td>85,5 79,3 79,8 83,0 85,4</td>
<td>100 100 100 100 100</td>
<td>100 100 100 100 100</td>
<td></td>
</tr>
</tbody>
</table>
Lähestymistapoja päästövelvoitteen hoitamiseksi

4.1 Joustomekanismit

4.1.1 EU:n päästökauppa

Päästöoikeudet ja päästöoikeuden hinta

Ottaaan en käyttöön päästökauppajärjestelmän EU-maat jättävät osan päästöjä koskevien velvoitteiden täyttämistä yhteisön alueella toimivien yritysten hoidettavaksi. Päästökaupan piiriin kuuluville yrityksille syntyy EU-tasolla tavallaan yhteinen päästötavoite, jonka ne päästökauppajärjestelmän avulla toteuttavat. Päästökaupan ulkopuolelle jäävien päästöjen rajoittaa-
minen tavoitteiden mukaisesti jää edelleen jäsenvaltioiden huolehdittavaksi muilla toimenpiteillä.

Päästöoikeuksien markkinatarjonnan kannalta merkittävän tekijänä on EU:n alueella liikkeelle laskettujen päästöoikeuksien kokonaismäärän ja sen jakautumisen. Suomen osuus kokonaismäärästä on vähäinen. Suomen kansallisella päästöoikeuksien jaolla ei käytännössä näin ollen voida olenaisesti vaikuttaa päästöoikeuden hintaan.

Kansalliset päästötaseet päästökaupassa

Kun jäsenmaat liittyvät päästökauppajärjestelmään, ne osallistuvat samalla EU:n yhteiseen päästökauppasektorin päästötavoitteeseen ja ikään kuin luopuvat kansallisesta päästökauppasektorin tavoitteesta. Jäsenmaan päästökauppasektorin päästöjen ei tarvitse olla yhtä suuret kuin kansallisesti liikkeelle laskettujen päästöoikeuksien määrän. Joissakin jäsenmaissa todelliset päästöt ylittävät kansallisesti liikkeelle laskettujen päästöoikeuksien määrän ja toisissa taas saattaa liikkua niiden seuran. Ideaalitapauksessa päästöjen vähennys ulkoisesti sehdään siellä, missä se on edullisinta.

Päästökaupalla pyritään hoitamaan yksi energeiapolitiikan keskeisistä tavoitteista eli energiantuotannosta aiheutuvien hiilidioksidipäästöjen saattaminen kansainvälisten velvoitteidemme mukaisiksi. Hyvin toimiva päästökauppajärjestelmä ei kuitenkaan hiilidioksidipäästöjen alentamisen ohjausomenpiteitä päästötavoitteiden saavuttamiseen päästökauppasektorilla. Jos yhteiskunnan
tavoitteena olisi pelkästään päästöjen alentaminen, aiheuttaisivat muut toimet vain yhteiskunnallisten kustannusten nousua.

4.1.2 Kioton mekanismit

Linkkidirektiivi laajentaa EU:n päästökaupan piirissä olevien yritysten mahdollisuuksia saavuttaa päästötavoitteensa myös hankkimalla hankemekanismeilla päästövähennyksiä ja samalla se todennäköisesti alentaa niiden kokonalaisyhtekokkastunnukseja. EU:n päästökaupan piirissä olevat toiminnanharjoittajat voivat hyödyntää CDM-hankkeista syntyiä sertifioituja päästövähennyksiä (CER) jo vuodesta 2005 alkaen ja JI-hankkeista syntyiä päästövähennyyskyviitä (ERU) vuodesta 2008 alkaen.

Jäsenvaltio päättää kauden 2008 – 2012 jakosuunnitelman valmistelun yhteydessä siitä, minkä verran laitokset voivat hyödyntää päästövähennysskyviitä. Jakosuunnitelmat tulee toimittaa komissionle kevätkuuhun 2006 mennessä. Mekanismien tulee täydentää kansallisia päästövähenn-

Suomen koeohjelma

Valtio ja yritysten rooli

Valtio voi hankkia projektioktaisilla mekanismilla päästöyksiköitä tai ostaa päästötakaupalla Kioto pöytäkirjan mukaisia sallittuja päästömääräyksiköitä, noastakseen Suomen päästötakotaa. Tällöin päästöyksiköiden hankinnalle on osoitettava rahoitus, hankinta on organisoitava ja hankinnan periaatteet ohjeistettava joko lainsäädännön kautta tai muulla tavoin.

Valtio voi osallistua myös kansainvälisten Kioto mekanismien hyödyntämistä varten perustettujen rahastojen toimintaan tai muuhun kansainväliseen yhteistyöhön. Tällöin valtio suorittaa tarvittavat sijoitukset rahastoon tai muuhun kansainväliseen yhteistyöhön ja saa itselleen rahoitusta vastaan päästöyksiköitä. Maksut rahoitettaisiin valtion budjetista.

Yritysten rooli hankemekanismien käytössä korostuu EU:n päästötakaupan alamisen ja linkkidiirektiivin myötä, sillä näiden odotetaan lisäävän toiminnanharjoittajien kiinnostusta mekanismien

Paisi silloin, kun yritykset linkkidirektiivin kautta tai muutoin suoraan itse ostavat päästövähenyyskäyttöä Kioton mekanismien mukaisista hankkeista, voi yrityksillä olla tärkeä rooli valtion tai jokun muun suoraan toteuttamissa hankkeissa. Suomalainen yritys voi esimerkiksi olla mukana hankkeessa investoijana, rakentajana, teknologian viejänä tai konsulttina. Päästövähennysten osata on kuitenkin tässä tapauksessa muu kuin kyseinen yritys.

Yritykset ja rahoituslaitokset voivat myös olla hankemekanismissa osallisina, mikäli valtion päättää antaa päästövähennysten hankintaprosessin tai valtion kansainvälisen päästökaupan hoidamisen jokin yrityksen tai rahoituslaitoksen hoidettavaksi.

Lisäksi yritykset ja rahoituslaitokset voivat olla toimijoina kansainvälisillä markkinoilla ja esimerkiksi myydä eteenpäin hankkimansa päästöyksiköt, jotka voivat olla joko yrityksen tai laitoksen itse toteuttaneista hankkeista syntyneitä päästövähennyksiä tai muutoin kansainvälinen markkinointi hyödyntää päätöksissä ollut järjestely.

Yritysten rooli ja toimintamahdollisuudet riippuvat täten ainakin osittain siitä, kuinka valtion päättää järjestää hankemekanismiin osallistumisen.

4.2 Päästösitoumusten toteuttaminen

Joustomekanismien käyttöönotto kansainvälisen ja kotimaisen ilmastopoliittikan välineiksi muuttaa huomattavasti perinteisten päästövähennystoimien roolia ilmastostrategiassa. Uusien välineiden myötä osallistuminen päästöjen vähentämiseen kotimaan ohella myös ulkomailla on tullut mahdolliseksi. Päästöjen vähentämisen painopisteisen suuntautumisen kotimaahan tai ulkomaalle riippuu hyvin pitkälle päästöoikeuksen hinnasta.

Valtion vastuulla on luonnollisesti kansallisesta päästötaseesta huolehtimin. Käytännössä vastuu jakautuu valtion ja päätökauppasektorin yritysten kesken sen jälkeen kun valtion päästömääräyksiköistä on erotettu ja jättä päästökauppasektorille päästöoikeuksina niiden osuus. Valtio vastaa päästökauppasektorin ulkopuolisesta päästötaseesta ja päästökauppasektorin yrityksistä omista päästötaseistaan.

4.3 Kioton sitoumuskausi

Päästöt Kioton sitoumuskaudella

<table>
<thead>
<tr>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>Yhteensä</th>
<th>Keskimäärin vuodessa</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKS</td>
<td>48,8</td>
<td>48,2</td>
<td>43,2</td>
<td>41,1</td>
<td>41,9</td>
<td>223,5</td>
</tr>
<tr>
<td>EPKS</td>
<td>36,2</td>
<td>36,1</td>
<td>36,0</td>
<td>35,9</td>
<td>35,8</td>
<td>180,0</td>
</tr>
<tr>
<td>- CO₂</td>
<td>22,9</td>
<td>22,8</td>
<td>22,8</td>
<td>22,7</td>
<td>113,0</td>
<td>22,8</td>
</tr>
<tr>
<td>- Muut kaasut</td>
<td>13,3</td>
<td>13,2</td>
<td>13,1</td>
<td>13,1</td>
<td>13,1</td>
<td>65,7</td>
</tr>
<tr>
<td>Yhteensä</td>
<td>85,0</td>
<td>84,4</td>
<td>79,3</td>
<td>77,0</td>
<td>77,7</td>
<td>403,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>Yhteensä</th>
<th>Keskimäärin vuodessa</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Teollisuuden prosessipäästöt</td>
<td>13,5</td>
<td>13,7</td>
<td>13,9</td>
<td>14,0</td>
<td>14,0</td>
<td>69,2</td>
</tr>
<tr>
<td>B. Teollisuuden energiantuotanto</td>
<td>7,2</td>
<td>7,3</td>
<td>7,3</td>
<td>7,3</td>
<td>7,3</td>
<td>36,4</td>
</tr>
<tr>
<td>C. Kaukolämpö-sektori</td>
<td>14,7</td>
<td>15,0</td>
<td>14,9</td>
<td>15,0</td>
<td>15,2</td>
<td>74,7</td>
</tr>
<tr>
<td>D. Lauhdevoiman tuotanto</td>
<td>13,3</td>
<td>12,3</td>
<td>7,1</td>
<td>4,9</td>
<td>5,5</td>
<td>43,1</td>
</tr>
<tr>
<td>Yhteensä</td>
<td>48,8</td>
<td>48,2</td>
<td>43,2</td>
<td>41,1</td>
<td>41,9</td>
<td>223,5</td>
</tr>
</tbody>
</table>

Päästökauppasektorin ulkopuolisten alojen arvioidut päästöt Kioton sitoumuskaudella esitettiin taulukossa 36 jaoteltuna hiilidioksidipäästöihin ja muuihin päästöihin. Taulukossa 43 hiilidioksidipäästöt on esitetty sektoreittain ja taulukossa 39 muut päästöt on esitetty kaasuittain.

Taulukko 43. EPKS:n hiilidioksidipäästöt tuottavan sektorin mukaisesti, milj. tonnia CO₂.

<table>
<thead>
<tr>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>Yhteensä</th>
<th>Keskimäärin vuodessa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liikenne¹</td>
<td>13,2</td>
<td>13,3</td>
<td>13,3</td>
<td>13,3</td>
<td>13,3</td>
<td>65,3</td>
</tr>
<tr>
<td>Lämmitys</td>
<td>3,4</td>
<td>3,3</td>
<td>3,2</td>
<td>3,2</td>
<td>3,1</td>
<td>16,2</td>
</tr>
<tr>
<td>Kaukolämpö</td>
<td>0,6</td>
<td>0,6</td>
<td>0,6</td>
<td>0,5</td>
<td>0,5</td>
<td>2,8</td>
</tr>
<tr>
<td>Maatalous ja rakentaminen²</td>
<td>3,5</td>
<td>3,4</td>
<td>3,4</td>
<td>3,4</td>
<td>3,4</td>
<td>17,2</td>
</tr>
<tr>
<td>Teollisuus</td>
<td>2,2</td>
<td>2,2</td>
<td>2,3</td>
<td>2,4</td>
<td>2,4</td>
<td>11,5</td>
</tr>
<tr>
<td>Yhteensä</td>
<td>22,9</td>
<td>22,8</td>
<td>22,8</td>
<td>22,8</td>
<td>22,7</td>
<td>113,0</td>
</tr>
</tbody>
</table>

¹ Liikenteen päästöihin sisältyy myös eräiden työkoneiden päästöjä
² Maatalouden ja rakennustoiminnan työkoneiden päästöt mukana

<table>
<thead>
<tr>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>Yhteensä</th>
<th>Keskimäärin vuodessa</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>1,3</td>
<td>1,3</td>
<td>1,3</td>
<td>1,3</td>
<td>1,3</td>
<td>6,6</td>
</tr>
<tr>
<td>Metaani</td>
<td>4,5</td>
<td>4,4</td>
<td>4,3</td>
<td>4,3</td>
<td>4,2</td>
<td>21,6</td>
</tr>
<tr>
<td>Dityppioksidi</td>
<td>6,6</td>
<td>6,6</td>
<td>6,5</td>
<td>6,5</td>
<td>6,5</td>
<td>32,6</td>
</tr>
<tr>
<td>Uudet kaasut</td>
<td>0,9</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td>1,1</td>
<td>4,9</td>
</tr>
<tr>
<td>Yhteensä</td>
<td>13,3</td>
<td>13,2</td>
<td>13,1</td>
<td>13,1</td>
<td>13,1</td>
<td>65,7</td>
</tr>
</tbody>
</table>

Hiilidioksidipäästöt aiheutuvat pääasiassa turvetuotantosidoin sekä polttoainevarastojen haihtumisista ja hävikeistä. Metaanipäästöistä valtaosa syntyy jättehuollossa ja maataloudessa. Dityppioksidipäästöistä hieman vajaa puolet on peräisin maataloudesta, muihin päästölähteisiin kuuluu muun muassa typpihapon valmistus.
Päästöoikeuksien vaje ja vähennysvelvoitteet Kioton sitoumuskaudella

Suomella on käytössä Kioton sopimuskauden alussa 352,5 milj. tonnin määrä päästömääräyksiköitä (AAU). Määrä on 70,5 milj. tonnia keskimäärin vuodessa. WM-skenaarion päästöt ovat yhdessä nieluvaikutuksen kanssa 408,0 milj. tonnia eli 81,6 milj. tonnia vuodessa keskimäärin. Luvussa 4 esitettyjen päästöarvioiden mukaan Suomen päästöt nousivat vuosina 2008 – 2012 keskimäärin 80,7 milj. tonniin. Lisäksi kasvihuonekaasunlajan käsittelyä tulisi Suomen tasaseen 0,9 milj. tonnin vuosittainen lisärahasi. Päästöt ylittäisivät Suomen käytössä olevat päästömääräyksiköt näin ollen 11,1 milj. tonnia vuosittain ja koko sitoumuskaudella 55,5 milj. tonnilla.

Taulukko 45. WM-skenaarion päästöt ja käytettävissä olevat AAU: l milj. tonnia.

<table>
<thead>
<tr>
<th>Keskimäärin vuodessa, milj. tonnia</th>
<th>Vuosina 2008 – 2012 yhteensä, milj. tonnia</th>
</tr>
</thead>
<tbody>
<tr>
<td>WM – skenaario</td>
<td></td>
</tr>
<tr>
<td>- PKS</td>
<td>44,7</td>
</tr>
<tr>
<td>- EPKS</td>
<td>36,0</td>
</tr>
<tr>
<td>Nielujen vaikutus</td>
<td>0,9</td>
</tr>
<tr>
<td>Yhteensä</td>
<td>81,6</td>
</tr>
<tr>
<td>Käytettävissä olevat AAU:l</td>
<td>70,5</td>
</tr>
<tr>
<td>Vaje</td>
<td>11,1</td>
</tr>
</tbody>
</table>

Päästömääräyksiköiden osoittaminen sektoreille

Kioton sitoumuskaudella käytössä olevat päästömääräyksiköt, 352,5 milj. tonnia, eivät riitä katottamaan syntyviä päästöjä ellei kotimaisia päästöjä selvästi leikata tai hankita lisää päästömääräyksiköitä ulkomaille päästöjen vähennystoimilla. Kun käytössä olevia päästömääräyksiköitä osoitetaan päästökauppasektorin ja ei-päästökauppasektorin päästöjen katteeksi, on selvää, että kaikille toimijoille niitä ei riitä tarpeen mukaan. Päästömääräyksiköiden jaossa eräänä keskeisänä lähtökohtana voisi olla päästövelvoitteiden hoidon kustannustehokkuus eri sektoreilla. Ilmastoto- ja energiastrategian taustaksi teettyissä selvityksissä arvioitiin päästöjen vähentämisen kustannuksia pyrittävän arvioimaan.

VTT:n selvityksessä arvioitiin paljonko Kioton sitoumuskaudella vuositasolla käytettävissä olevista 70,5 milj. päästömääräyksiköistä olisi osoittettava päästökauppasektorille ja ei-päästökauppasektorille, kun otetaan huomioon kotimaassa tehtävien päästövähennysten kustannukset. Selvityksen mukaan kunnallekin sektorin päästöjen katteeksi tulisi Tällä perusteella varata 35,2 milj. tonnin edestä päästömääräyksiköt vuositasolla. Tuloksia merkitisi sitä, että näiden lähtökohtien perusteella päästökauppasektorille jaettavien päästöoikeuksien määrä jäisi noin 10 milj. tonnia vuodessa pienemmäksi kuin WM-skenaarion tarvelaskelmia osoittaa. Ei-päästökauppasektorilla vaje jäisi noin miljoonan tonniin. Tulokset ovat luonnollisesti suuntaa

1 VTT, 2005 b
antavia, koska mallilaskelmissa kaikkia kustannuksia tai mahdollisia politiikkatoimenpiteitä ei voida huomioida.

Tulokset eivät oleellisesti muutu, vaikka päästökauppa otettaisiin huomioon päästökauppasektorin toimenpiteenä. Ei-päästökauppasektorin suhteellista kustannustehottomuutta korostaakin se, että sektorilla olevat toimijat eivät voi alentaa päästövähennyskustannuksia joustomekanismeilla. Vastaavanlaisia tuloksia on saatu teetetyissä kansantaloudellisissa selvityksissä. Päästökauppasektorin ja ei-päästökauppasektorin päästöjen vähennyksen kustannuksia on kuvattu alla olevassa kuvassa.

![Kuva 6. Periaatekuva päästöjen vähentämisestä rajakustannuksista päästökauppa- ja ei-päästökauppasektoreilla](image)

Edellä mainitussa VTT:n selvityksessä arvioitiin energiamallilaskelmien perusteella kustannustehokkainta tapaa päästöoikeuksien allokomiseksi päästökauppasektorin keskeisille toimijoille. Selvityksen perusteella päästöoikeuksia tulisi jakaa päästökauppaan kuuluville teollisuusyrityksille lähis tarpeen mukaan, seuraavaksi eniten kaukolämmön tuotannolle ja erilliselle sähkön tuotannolle suhteellisesti vähiten.

Kioton mekanisminen käyttö kansantalouden näkökulmasta

2 VATT, 2005
Yllä olevassa esimerkkikuvassa kustannustehokkain tapa Suomen päästövelvoitteen toteuttamiseksi olisi asettaa ei-päästökaappasektorille noin miljoonan tonnin päästöjen vähennysvelvoite, jonka saavuttamista ohjattaisi valtióvallan toimenpiteillä, kuten verotuksella, tukipoliitiikalla ja normeilla. Päästökaappasektorin ja valtion osalle jääisi velvoitteen loppuosaan hoitaminen.

Keskeinen ilmastopolitiikan linjua on valtion osallistuminen Kioton mekanismien käyttöön. Päästöjen vähennyskustannukset eivät ole etukäteen tiedossa, joten päätöksen täytäntä perustuu kustannusarvioihin. Valtio on vastuussa päästövähennysvelvoitteen täyttymisestä ei-päästökaappasektorin osalta ja mahdollinen vähennysvelvoitteen ylitys joudutaan hankkimalleen mekanismeilla eli esimerkiksi valtioiden välisen päästökaupan avulla. Valtio ei voi myöskään olla täysin passiivinen mekanismien käytössä, koska sen on luotava tarvittavat sopimuspuitteet mekanismien käytölle.

Kioton mekanismien käyttöä rajottaa vaatimus, jonka mukaan mekanismien tulisi olla täydentävät toimenpiteitä muille toimille. Täydentävyyden vaatimusta ei ole määritelty täsmällisesti, mutta tässä on oletettu, että valtion ja yritysten yhteis lasketut Kioton mekanismeilla toteutetut toimenpiteet eivät voisi ylittää 50 prosenttia päästöjen vähennystarpeesta. Tämä merkitsisi sitä, että mekanismilla voitaisiin osallistua päästöjen vähentämiseen vuosittain Suomen kielteisillä menetelmillä enintään noin 5,5 milj. tonnin edestä. Mikäli valtio osallistuisi koko määrällä, ei yrityssektori voisi enää käyttää Kioton mekanismeja hyväksi. Tämä ei olisi järjestelmän perusajatusten mukaista, jonka vuoksi valtion on jättettävä tilaa myös yritysten mekanismien käytölle.

Edellä esitetyn perusteella eräs mahdollisuus päästöoikeuksien vajeen kattaminen Kioton sitoumuskaudella voisi olla seuraavan kaltainen:

3 VATT, 2005
• Ei-päästökauppasektorin velvoite 1,0 milj. tonnia
• Valtion osallistuminen mekanismeihin 2,0 milj. tonnia
• Valtion koeohjelman tulokset 0,4 milj. tonnia
• Päästökauppasektorin velvoite 7,7 milj. tonnia
• **Yhteensä** 11,1 milj. tonnia

Kioton kauden jälkeisen mahdollisten sitoumusvelvoitteiden vaikutuksia arvioidaan luvussa 7.
5 WAM-skenaario

5.1 Keskeiset lähtökohdat

Edellisessä luvussa kuvattiin menettelyjä, joilla kasvihuonekaasupäästöihin liittyvät tavoitteet voidaan saavuttaa. Menettelyjen vaikutuksiin muille aloille, kuten energiapolitiikan, aluepolitiikan tai valtiontalouden tavoitteisiin ei otettu kantaa. Tässä luvussa muodostetaan skenaario, jossa arvioidaan kehitystä energia-alalla ja muilla sektoreilla vuoteen 2025 saakka uudessa toimintaympäristössä.

Taulukko 46. Oletukset politiikkoimista WAM-skenaarioissa.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- uusi teknologia</td>
<td>kasvua</td>
<td>kasvua</td>
<td>kasvua</td>
</tr>
<tr>
<td>- nykyteknologia</td>
<td>vähenee</td>
<td>vähenee</td>
<td>vähenee</td>
</tr>
<tr>
<td>- energiansäästö</td>
<td>kasvua</td>
<td>kasvua</td>
<td>kasvua</td>
</tr>
<tr>
<td>Energiaverot, normit</td>
<td>muutoksia nykyiseen vero- tukseen</td>
<td>muutoksia nykyiseen vero- tukseen</td>
<td>muutoksia nykyiseen vero- tukseen</td>
</tr>
<tr>
<td>EU:n päästökauppa</td>
<td>voimassa</td>
<td>voimassa</td>
<td>voimassa</td>
</tr>
<tr>
<td>-päästöoikeuden hinta</td>
<td>15 €/tCO₂</td>
<td>20 €/tCO₂</td>
<td>20 €/tCO₂</td>
</tr>
<tr>
<td>Mekanismit</td>
<td>CDM käytössä,</td>
<td>kaikki käytössä,</td>
<td>kaikki käytössä,</td>
</tr>
<tr>
<td></td>
<td>koeohjelma</td>
<td>valtio osallistuu</td>
<td>valtio osallistuu</td>
</tr>
</tbody>
</table>

Kionton mekanismien käytöllä voidaan alentaa jossain määrin ilmastonpolitiikan kustannuksia, jolloin kansantalouden aktiviteetti nousisi vilkkauammaksi kun ilman mekanismien käyttöä.
Energian kulutus ja päästöt kohoaisivat talouden kasvun myötä. Tärkeimmät energia- ja päästötaseen rakenteeseen vaikuttavat tekijät ovat kuitenkin päästööikeuden hinta, energian maailmanmarkkinahinnat sekä harjoitettu energiapolitiikka. Tämän vuoksi mekanismien vaikutuksia ei ole selvitetty energiataseen kannalta, vaan on keskitytty niiden käytön kansantaloudellisiin vaikutusarvioihin, jotka esitetään luvussa 7.

5.2 Energiapolitiikan keinot

Energiapolitiikan tavoitteiden edistämiseksi valtiovalta on käyttänyt erityyppisiä ohjuskeinoja, joista tärkeimpiä ovat olleet:

- energiaverotus ja siihen sisältyvät tuet
- energianinvestointien avustukset
- metsähakkeen hankintaan liittyvät tuet
- teknologian kehittämisensä vaikutus
- säädökset ja määryykset
- sopimusjärjestelmät
- tiedotus, koulutus ja neuvonta.

Energian tuotannon ohjaamisen kannalta merkittävimmät ohjuskeinot ovat olleet energiaverotus, investointituet sekä teknologian kehittämisen tukeminen. Säädöksin säännellään suoraan vain ydinvoiman rakentamista, mutta ympäristölainsäädännöllä vaikutetaan laajemminkin energiantuotantoon.

Alla olevassa taulukossa on tarkasteltu eri ohjuskeinojen vaikutusten pääpiirteittäistä kohdentumista.

\(^4\) Kauppa- ja teollisuusministeriö, 2004 a
Kun taloudellisilla ohjauksinoilla pyritään vaikuttamaan energian hankinnan rakenteeseen, on taustalla useanlaisia tavoitteita, kuten ympäristötavoitteet, kotimaisten ja uusiutuvien energialähteiden edistäminen sekä energian hankinnan varmuuden edistäminen. Hintaohjauksella pyritään vaikuttamaan kestävän kehityksen tavoitteiden mukaisesti myös energian kulutukseen. Muihin tavoitteisiin kuuluu mm. uuden energiateknologian edistäminen.

Muillakin avustustoimilla, kuten energiansäästöopimusjärjestelmillä, vaikutetaan ensisijaisesti energian kulutukseen.

EU:n päästökauppa- ja energianpäästöavustuksessa on keskeisiä keskeisiä ohjauksinoja silloin kun tavoitteena on vaikuttaa energiantuotannon rakenteeseen, esimerkiksi bioenergian käytön lisääminen. Investointiavustukset soveltuvat parhaiten sellaisiin kohteisiin, joissa politiikan tavoitteet saavutetaan suuresti avustuksen ehdotusten kannattavuutena.
5.3 Ohjauskeinojen vaikuttavuus

5.3.1 Vaikutus energian hintaan

Polttoaineet

Maakaasun hintaa ei voi kilpailukykymiesläpä verrata suoraan kiinteiden polttoaineiden hintoihin, vaan kilpailuasetelman muutoksia on tarkasteltava suhteellisten hintojen kehyksen perusteella.

Metsähake ja turve ovat tulleet nykyisillä vero- ja tukijärjestelmillä kilpailukykyisiksi polttoaineiksi lämmön ja sähkön yhteisluotantolaitoksissa ja erillisessä kaukolämmön tuotannossa varsinkin sisämaassa. Maakaasun kilpailuasema on myös selvästi parantunut energiaverojärjestelmän ansiosta. Raskasta polttoöljyä käytetään käytännössä pääpolttoaineena lähinnä vain lämpökeskuksissa.

Energiaverojen ja verotukien vaikutus polttoaineiden kilpailuasemiin lämmön ja sähkön tuotannossa on esitetty alla olevassa taulukossa.

*A Oletettu samaksi kuin turpeen veroton keskihinta.

Päästökauppa näyttäisikin muodostuvan merkittävimmäksi ohjausmekanismissa energiantuotannossa heti päästökaupan alkaessa, sillä laaja-alaisuutensa vuoksi se on tehokas jo varsin alhaisilla päästöoikeuden hinnolla. Päästökauppa ei kuitenkaan ole energiapoliittisen tavoitteiden kannalta ongelmanetön, sillä varsinkin terveen asemaksi käy päästökaupan oloissa tukakaksi. Myöskään puun energiakäytön kohdalla tilanne ei ole ongelmaton, kun päästöoikeuden hinta alkaa nousta korkeaksi. Päästökaupan tärkein parametri, päästöoikeuden hinta, ei ole energiapoliittikasta vastaavien kontrolloitavissa.

Vaikutus sähkön ja lämmön hintaan

Pohjoismaisilla sähkömarkkinoilla sähkön markkinahinta muodostuu kulkein tunnille muuttuvilta tuotantokustannuksiltaan kalleimman sähköä tuottaneen voimalaitoksen rajakustannusten mukaisesti. Markkinamekanismi ohjaa voimalaitosten käyttöä siitä, että voimalaitosten niin kutsuttu ajojärjestyys perustuu laitosten muuttuvien tuotantokustannusten edullisuusjärjestykseen. Tanskan ja Suomen hiililauhde on päätös ajasta rajatuotantomuoto, joten markkinahinta muodostuu sen muuttuvien kustannusten mukaisesti.
Päästökauppa vaikuttaa sähkön tuotantokustannuksiin siten, että päästöoikeuden markkinahinta nostaa CO2-päästöjä aiheuttavien tuotantomuotojen kustannuksia. Vaikka sähköntuottajat saavat päästöoikeudet osittain ilmaineksiksi alkujaossa, muodostuu päästöoikeuksille markkinoiden kautta arvo. Tuottajat voivat vaihtoehtoisesti myydä päästöoikeudet ja vähentää sähkön tuotantoa. Tämän vuoksi päästöoikeuden hinta heijastuu täysimääräisesti sähkö tuotantokustannuksiin.

Päästöoikeuden hinta nostaa merkittävästi juuri sähkön rajatuotantomuodon eli hiililauhteen kustannuksia. Koska pääosan ajasta hiililauhteen kustannukset määrittävät sähkön markkinahinnan, on päästökaupalla huomattava vaikutus sähkön markkinahintaan (kuva 9).

Päästöoikeuden hinnalla 10 €/tCO2 pörssisähkön hinta kohoaisi noin 8 €/MWh ja 20 euron hinnalla noin 16 €/MWh.

Vaikutus sähkön kuluttajahintoihin olisi huomattava. Sähkölämmitetyn (suora sähkölämmitys) omakotitalon lämmityskustannukset nousisivat 5 euron päästöoikeuden hinnalla vuodessa noin 5 prosenttia ja 20 euron päästöoikeuden hinnalla runsaan viidenneksen. Teollisuuden ostosähkön osalta hinnan nousu olisi suhteessa huomattavasti suurempi, koska teollisuuden sähkön hinta on alempi kuin muilla kuluttajilla.
Kuva 10. Päästökaupan ja sähköverojen vaikutus sähkön kuluttajahintaan

Päästökaupan vaikutus sähkön hintaan olisi tarkastellulla päästöoikeuden hinnalla kotitalouksissa yhtä suuri kuin nykyisen sähköveron arvonlisäveron. Teollisuudessa päästökaupan vaikutus sähkön hintaan on sähköveroon verrattuna nelinkertainen.

Päästökaupan vaikutus öljylämmittäjän kustannuksiin tulee jalostamoiden päästörajoitteen kautta. Kustannusten lisäys on minimaalinen, koska päästöoikeudet jaetaan jalostamoille suurimmaksi osaksi maksutta.

Päästökaupan merkittävin vaikutus lämmityskustannuksiin tulee sähkölämmityseven yhtä suureksi rakennuksiin. Edellä on todettu sähkön hintan muodostuksen liittyvät epävarmuudet, mutta näyttää selvästi, että sähkölämmityksen kilpailuasema muihin lämmitysmuotoihin heikkenee.

Myös pellettilämmityksen kilpailukyky öljylämmityksen nähden heikkenee päästökaupan alakossa, koska puun energiakysyntä kasvaa päästökauppasektorilla nostaan hintoja.
5.3.2 Päästökaupan vaikutus polttoaineekäyttöön

Taulukossa 49 on kuvattu sähkön ja lämmön tuotannon polttoaineekäyttö päästökaupan oloissa, kun nykyiset energiaverot ja verotuet on poistettu. Vertailukohtana on vuoden 2010 kohdalla ajoittuva perustapaus, jolla tarkoitetaan polttoaineekäytön rakennetta ilman päästökauppaa nykyisten energiaverojen ja verotuken voimassa ollessa vuonna 2010.

Taulukko 49. Sähkön ja lämmön tuotannon polttoaineekäyttö eri päästöoikeuden hinnolla, nykyiset energiaverot ja verotuet poistettu, vuosi 2010, TWh.

<table>
<thead>
<tr>
<th>Kivihiili</th>
<th>Perustapaus</th>
<th>Päästökauppa, päästöoikeuden hinta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 €/tCO₂</td>
<td>10 €/tCO₂</td>
</tr>
<tr>
<td>Maakaasu</td>
<td>27,7</td>
<td>39,2</td>
</tr>
<tr>
<td>Öljy</td>
<td>38,9</td>
<td>36,6</td>
</tr>
<tr>
<td>Turve</td>
<td>10,4</td>
<td>10,3</td>
</tr>
<tr>
<td>Puu</td>
<td>25,7</td>
<td>17,9</td>
</tr>
<tr>
<td></td>
<td>27,6</td>
<td>27,4</td>
</tr>
</tbody>
</table>

Kotimaisten polttoaineiden osuus sähkön ja lämmön tuotannon polttoaineista alenisi merkittävästi, jos energiaverot ja verotuet poistettaisiin päästökaupan alkaessa.

5 Tarkempi analyysi löytyy selvityksestä Electrowatt-Ekono, 2004 a (selvityksessä turpeen vero vuoden 2005 alun mukainen)
Nykyisten energiaverojen ja verotuken säilyttäminen sähkön ja lämmön tuotannossa päästökaupan alkaessa johtaisi aivan erilaiseen polittoainetaseeseen kuin edellä kuvattu vaihtoehdossa. Tämä käy ilmi taulukon 50 luvuista.

Taulukko 50. Sähkön ja lämmön tuotannon polttoainekäyttö eri päästöoikeuden hinnoilla, nykyiset energiaverot ja verotuet voimassa, vuosi 2010, TWh.

<table>
<thead>
<tr>
<th>Perustapaus</th>
<th>Päästökauppa, päästöoikeuden hinta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 €/tCO₂</td>
</tr>
<tr>
<td>Kivihiili</td>
<td>27,7</td>
</tr>
<tr>
<td>Maakaasu</td>
<td>38,9</td>
</tr>
<tr>
<td>Öljy</td>
<td>10,4</td>
</tr>
<tr>
<td>Turve</td>
<td>25,7</td>
</tr>
<tr>
<td>Puu</td>
<td>27,6</td>
</tr>
</tbody>
</table>

Tässä vaihtoehdossa kivihiilen osuus vähenee sitä enemmän mitä korkeampi päästöoikeuden hinta on. Osuuttaan kasvattavat selvästi jo alemmillakin päästöoikeuden hinnoilla puu ja maa-kaasu. Turpeen käyttö alenee, mutta ei siinä määrin kuin aiemmin tarkastellussa vaihtoehdossa. Energiaverot ja verotuet ohjaavat polttoainevalintoja energiapolitiikan tavoitteiden suuntaisesti myös päästökaupan olossa. Turpeen kohdalla päästökaupan vaikutus on kuitenkin niin merkittävä, että korkeamilla päästöoikeuden hinnoilla tuontipolttoaineet, erityisesti kivihiili, tulevat nykyveroilla turvetta edullisemmiksi.

5.4 Puu ja turve päästökaupan oloissa

5.4.1 Puun energiakäyttö

Puun käyttö raaka-aimeena ja energialähteenä

Taulukossa 51 näkyy yhteenvento puujakeiden käytöstä jatkojalostukseen ja energiantuotantoon.

Taulukko 51. Metsäteollisuuden tuotannossa syntyvien puujakeiden käyttö jalostuksessa ja energiantuotannossa vuonna 2002, TWh.

<table>
<thead>
<tr>
<th>Energiantuotanto</th>
<th>Jatkojalostus</th>
<th>Yhteensä</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kuori</td>
<td>14,9</td>
<td>-</td>
</tr>
<tr>
<td>Puru</td>
<td>4,3</td>
<td>4,8</td>
</tr>
<tr>
<td>Hake</td>
<td>1,6</td>
<td>21,3</td>
</tr>
<tr>
<td>Muut jakeet</td>
<td>0,8</td>
<td>-</td>
</tr>
<tr>
<td>Metsähake</td>
<td>2,5</td>
<td>-</td>
</tr>
<tr>
<td>Yhteensä</td>
<td>24,1</td>
<td>25,1</td>
</tr>
</tbody>
</table>

Metsähakkeen käyttö kasvaisi energiantuotannossa alla olevan taulukon mukaisesti. Erviossa on oletettu, että päästökauppa ei vaikuttaisi puumasateollisuudesta, sahoista ja muusta puunjaloituksesta syntyvien jakeiden energia- ja raaka-ainekäytön suhteisiin. Puun energiakäytön kasvu johtuisi näin ollen puhtaasti metsähakkeen käytön kasvusta.

Taulukko 52. Arvioita metsähakkeen (ei sisällä metsähakkeen pienkäyttöä) käytöstä päästökaupan oloissa vuonna 2010, TWh.

<table>
<thead>
<tr>
<th>Toteutunut käyttö</th>
<th>Vuosi 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 €/tCO(_2)</td>
</tr>
<tr>
<td>2002</td>
<td>2,5</td>
</tr>
<tr>
<td>2003</td>
<td>3,5</td>
</tr>
</tbody>
</table>

Päästöoikeuden hintatasolla 20 €/tCO\(_2\) metsähakkeen käyttö olisi jo lähellä käytännön saatavuusarvoja, kun taulukon 6.7 kulutusarvioon lisätään vielä metsähakkeen pienkäyttö.

Puun jatkojalostus ja päästökauppa

Päästökaupan alkaessa energiantuottajan kustannukset turpeen käytöstä kääntyvät nousuun, koska normaalien poltoainekustannusten lisäksi sen täytyy luovuttaa turpeen käytöstä aiheutuvien hiilidioksidipäästöjen verran päästöoikeuksia. Vaihtoehtoisella poltoainella, puulla, näitä

6 Ekono 2004
rasitteita ei ole, joten energiantuottajan kannattaa maksaa siitä aikaisempaa enemmän. Samasta tuotteesta kilpailevan puun jatkojalostajan on seurattava mukana hintakehityksessä voidakseen jatkaa tuotantoaan.

Ensimmäisenä päästökaupan vaikutukset näkyvät lastu- ja kuitulevyteollisuudessa sekä raakamäntyöljyn jalostuksessa. Päästöoikeuden hinnan kohotessa vaikutukset alkaisivat tuntua myös metsäteollisuuden puun hankinnassa. Elinkeinopoliittisesti puun jatkojalostus on perinteisesti Suomessa asetettu energiakäytön edelle kansantasoudellisista syistä.

5.4.2 Turve

Päästökaupan olosuhteissa turpen kilpailukyky heikkenee niin fossiilisiin polttoaineisiin kuin energiapuuhunkin nähdä. Kun päästöoikeuden hinta nousee 15 €/tCO₂ tasolle, alkaa kivihiili olla kilpailukyvyltään turvetta paremmassa asemassa rannikolla sijaitsevissa laitoksissa. Sisämaassa turpen kilpailuasema kivihiileen nähdä säilyy sähkön ja lämmön yhteistuotannossa ja lämmön erillistuotannossa puolustaa yli 30 €/tCO₂ päästöoikeuden hintaan saakka.

5.5 Energian kysyntä ja hankinta WAM-skenaarioissa

Sähkö

Taulukko 55. Sähkön kokonaiskulutus Suomessa WM- ja WAM-skenaarioissa, TWh

<table>
<thead>
<tr>
<th></th>
<th>2003</th>
<th>2010</th>
<th>2015</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>WM-skenaario</td>
<td>85,2</td>
<td>95,5</td>
<td>100,6</td>
<td>107,9</td>
</tr>
<tr>
<td>WAM-skenaario</td>
<td>85,2</td>
<td>93,3</td>
<td>98,0</td>
<td>104,8</td>
</tr>
</tbody>
</table>

Taulukko 56. Sähkön hankinta WAM-skenaariossa, TWh ja %.

<table>
<thead>
<tr>
<th>Osuudet, %</th>
<th>TWh 2003</th>
<th>TWh 2010</th>
<th>TWh 2025</th>
<th>Osuudet, % 2010</th>
<th>Osuudet, % 2003</th>
<th>Osuudet, % 2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ydinvoima</td>
<td>21,8</td>
<td>31,1</td>
<td>34,6</td>
<td>25,6</td>
<td>33,3</td>
<td>33,0</td>
</tr>
<tr>
<td>Vesivoima</td>
<td>9,5</td>
<td>13,3</td>
<td>14,0</td>
<td>11,2</td>
<td>14,2</td>
<td>13,4</td>
</tr>
<tr>
<td>Yhteistuotanto, kaukolämpö</td>
<td>15,1</td>
<td>19,7</td>
<td>23,5</td>
<td>17,8</td>
<td>21,1</td>
<td>22,4</td>
</tr>
<tr>
<td>Yhteistuotanto, teollisuus</td>
<td>12,7</td>
<td>15,2</td>
<td>18,4</td>
<td>14,9</td>
<td>16,3</td>
<td>17,5</td>
</tr>
<tr>
<td>Lauhdetuotanto</td>
<td>21,1</td>
<td>4,5</td>
<td>6,2</td>
<td>24,7</td>
<td>4,9</td>
<td>5,9</td>
</tr>
<tr>
<td>Tuulivoima</td>
<td>0,1</td>
<td>0,9</td>
<td>2,9</td>
<td>0,1</td>
<td>0,9</td>
<td>2,8</td>
</tr>
<tr>
<td>Tuotanto</td>
<td>80,4</td>
<td>84,7</td>
<td>99,6</td>
<td>94,3</td>
<td>90,8</td>
<td>95,0</td>
</tr>
<tr>
<td>Nettotuotantti</td>
<td>4,9</td>
<td>8,6</td>
<td>5,2</td>
<td>5,7</td>
<td>9,2</td>
<td>5,0</td>
</tr>
<tr>
<td>Yhteensä</td>
<td>85,2</td>
<td>93,3</td>
<td>104,8</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Kuva 11. Lauhdevoiman tuotanto WAM-skennariossa, TWh

Teollisuuden polttoaineet

Teollisuuden polttoainekäyttössä WAM-skenaarion merkittävimmat muutokset WM-skenaarioon verrattuna ovat turpeen ja metsähakkeen käytössä. Turpeen käyttö vähenee samalla kun metsähakkeen käyttö kasvaa erittäin voimakkaasti. Kotimaiset polttoaineet näin ollen korvaavat toisiaan. Tuontipolttoaineista öljyn ja kivihiilen osuus polttoaineiden kokonaiskäytöstä jonkin verran
vähenee. Teollisuudessa tuontipolttoaineiden osuus kokonaisuudessaan hieman laskee. ja maa-
kaasun käyttö kasvaa jonkin verran WM-skenaariosta.

Taulukko 57. Teollisuuden polttoainekäyttö WAM-skenaariossa, PJ

<table>
<thead>
<tr>
<th></th>
<th>2003</th>
<th>2010</th>
<th>2025</th>
<th>2003</th>
<th>2010</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Öljy</td>
<td>88,1</td>
<td>98,7</td>
<td>102,1</td>
<td>19,1</td>
<td>18,6</td>
<td>17,8</td>
</tr>
<tr>
<td>Hiili</td>
<td>9,7</td>
<td>9,7</td>
<td>9,9</td>
<td>2,1</td>
<td>1,8</td>
<td>1,7</td>
</tr>
<tr>
<td>Koksi, koksi- ja masuunikaasu</td>
<td>49,4</td>
<td>55,4</td>
<td>61,9</td>
<td>10,7</td>
<td>10,4</td>
<td>10,8</td>
</tr>
<tr>
<td>Kaasu</td>
<td>72,3</td>
<td>84,1</td>
<td>84,0</td>
<td>15,7</td>
<td>15,8</td>
<td>14,6</td>
</tr>
<tr>
<td>Turve</td>
<td>20,6</td>
<td>15,0</td>
<td>14,0</td>
<td>4,5</td>
<td>2,8</td>
<td>2,4</td>
</tr>
<tr>
<td>Jäteliemet</td>
<td>147,0</td>
<td>169,3</td>
<td>193,4</td>
<td>31,9</td>
<td>31,9</td>
<td>33,7</td>
</tr>
<tr>
<td>Teollisuuden jätepuu ja kuori</td>
<td>55,9</td>
<td>61,6</td>
<td>68,0</td>
<td>12,1</td>
<td>11,6</td>
<td>11,9</td>
</tr>
<tr>
<td>Metsähake</td>
<td>6,8</td>
<td>23,5</td>
<td>24,4</td>
<td>1,5</td>
<td>4,4</td>
<td>4,3</td>
</tr>
<tr>
<td>Muut</td>
<td>10,7</td>
<td>13,9</td>
<td>16,0</td>
<td>2,3</td>
<td>2,6</td>
<td>2,8</td>
</tr>
<tr>
<td>Yhteensä</td>
<td>460,5</td>
<td>531,2</td>
<td>573,7</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Rakennusten lämmitys

Lämmitysenergian käyttö alenee WAM-skenaariossa WM-skenaarioon nähden lisääntyneiden energiansäästötoimenpiteiden seurauksena. Energian hinnan nousu ja strategian mukaiset energiansäästön edistämistoimet ovat pontimena lämmitysenergian kysynnän vähentymiseen.

**Taulukko 58. Kaukolämpösektorin polttoainekäyttö WAM-skenaariossa, PJ ja %.

<table>
<thead>
<tr>
<th>Polttoaineet, PJ</th>
<th>Osuudet, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2003</td>
</tr>
<tr>
<td>Öljy</td>
<td>12,0</td>
</tr>
<tr>
<td>Hiili</td>
<td>53,6</td>
</tr>
<tr>
<td>Kaasu</td>
<td>75,8</td>
</tr>
<tr>
<td>Turve</td>
<td>40,6</td>
</tr>
<tr>
<td>Jätepuu ja kuori</td>
<td>14,6</td>
</tr>
<tr>
<td>Metsähake</td>
<td>5,5</td>
</tr>
<tr>
<td>Muut bio-ja kierrätyspolttoaineet</td>
<td>4,8</td>
</tr>
<tr>
<td>Yhteensä</td>
<td>206,9</td>
</tr>
</tbody>
</table>

Liikenne

Liikenteeseen kohdistuvien strategic mukaisten toimenpiteiden arvioidaan vähentävän sektorin energian kulutusta noin viidellä prosentilla WM-skenaarioon verrattuna jo Kioton sitoumuskaudella. Maantieliikenteessä dieselkäyttöisen autokannan osuus kasvaa vielä jonkin verran WM-skenaarion tasosta.

Energian kokonaiskäyttö

Taulukko 59. Energian kokonaiskulutus WAM-skenaariossa, PJ ja %.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Öljy</td>
<td>374</td>
<td>365</td>
<td>356</td>
<td>336</td>
<td>25,1</td>
<td>23,6</td>
<td>22,5</td>
<td>20,4</td>
</tr>
<tr>
<td>Kivihiili</td>
<td>244</td>
<td>113</td>
<td>104</td>
<td>139</td>
<td>16,4</td>
<td>7,3</td>
<td>6,6</td>
<td>8,4</td>
</tr>
<tr>
<td>Maakaasu</td>
<td>169</td>
<td>210</td>
<td>215</td>
<td>223</td>
<td>11,4</td>
<td>13,6</td>
<td>13,6</td>
<td>13,6</td>
</tr>
<tr>
<td>Ydinvoima</td>
<td>238</td>
<td>339</td>
<td>377</td>
<td>377</td>
<td>16,0</td>
<td>22,0</td>
<td>23,9</td>
<td>22,9</td>
</tr>
<tr>
<td>Sähköntuonti</td>
<td>18</td>
<td>31</td>
<td>34</td>
<td>19</td>
<td>1,2</td>
<td>2,0</td>
<td>2,1</td>
<td>1,1</td>
</tr>
<tr>
<td>Tuontienergia</td>
<td>1043</td>
<td>1058</td>
<td>1085</td>
<td>1094</td>
<td>70,1</td>
<td>68,5</td>
<td>68,7</td>
<td>66,5</td>
</tr>
<tr>
<td>Vesivoima</td>
<td>34</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>2,3</td>
<td>3,1</td>
<td>3,1</td>
<td>3,1</td>
</tr>
<tr>
<td>Tuulivoima</td>
<td>0,3</td>
<td>3</td>
<td>5</td>
<td>10</td>
<td>0,0</td>
<td>0,2</td>
<td>0,3</td>
<td>0,6</td>
</tr>
<tr>
<td>Turve</td>
<td>98</td>
<td>61</td>
<td>57</td>
<td>66</td>
<td>6,6</td>
<td>3,9</td>
<td>3,6</td>
<td>4,0</td>
</tr>
<tr>
<td>Jätelemet</td>
<td>147</td>
<td>169</td>
<td>173</td>
<td>193</td>
<td>9,9</td>
<td>11,0</td>
<td>11,0</td>
<td>11,8</td>
</tr>
<tr>
<td>Metsätähdehake</td>
<td>12</td>
<td>41</td>
<td>43</td>
<td>46</td>
<td>0,8</td>
<td>2,7</td>
<td>2,7</td>
<td>2,8</td>
</tr>
<tr>
<td>Muu puu</td>
<td>130</td>
<td>128</td>
<td>127</td>
<td>132</td>
<td>8,7</td>
<td>8,3</td>
<td>8,0</td>
<td>8,0</td>
</tr>
<tr>
<td>Muut kotimaiset</td>
<td>23</td>
<td>36</td>
<td>41</td>
<td>52</td>
<td>1,5</td>
<td>2,3</td>
<td>2,6</td>
<td>3,2</td>
</tr>
<tr>
<td>Kotimainen energia</td>
<td>445</td>
<td>486</td>
<td>494</td>
<td>551</td>
<td>29,9</td>
<td>31,5</td>
<td>31,3</td>
<td>33,5</td>
</tr>
<tr>
<td>Kokonaiskulutus</td>
<td>1487</td>
<td>1543</td>
<td>1579</td>
<td>1644</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Bioenergia</td>
<td>399</td>
<td>420</td>
<td>424</td>
<td>467</td>
<td>26,8</td>
<td>27,2</td>
<td>26,8</td>
<td>28,4</td>
</tr>
<tr>
<td>Uusiutuva energia</td>
<td>337</td>
<td>415</td>
<td>426</td>
<td>471</td>
<td>22,7</td>
<td>26,9</td>
<td>27,0</td>
<td>28,6</td>
</tr>
</tbody>
</table>

Uusiutuvien ja bioenergelähteiden käyttö WAM-skenaarioissa

Suomessa käytössä olevia uusiutuuvia energialähteitä ovat vesivoima, tuulivoima, ympäristön lämpö ja aurinkoenergia sekä uusiutuva bioenergia, johon luetaan puuperäiset polttoaineet, peltobiomassat, biokaasu ja kierrätyspolttoaineiden biohajoava osa.

Bioenergiaan kuuluvat edellä mainitut uusiutuvat bioenergelähteet ja turve. Niillä tuotetaan Suomessa merkittävä osa energiasta.

Bioenergia

Kuvassa mm on esitetty bioenergian käytön kehitys WAM-skenaarioin mukaisessa ympäristössä teollisuudessa, yhdyuskunnissa, muilla sektoreilla ja talokohtaisessa lämmityksessä. Jätelemien sekä lauhdevoiman tuotannon bioenergian käyttöä kuvassa ei ole mukana. Bioenergian kokonaiskäyttö kasvaa skenaariossa tasaisesti koko tarkastelujakson. Metsähakkeen käytön lisäys on erittäin merkittävä, samoin kierrätyspolttoaineiden ja peltobiomassojen. Näiden polttoaineiden käytön voimakas lisääntyminen syrjäyttää vääristävät fossiilisia polttoaineita ja turvetta, kun polttoaineiden kokonaiskäyttön määrä on sidoksissa lähinnä lämmön tarpeen kehitykseen. Tur-
vetta ja puuta on perinteisesti käytetty samoissa kattiloissa toisiaan täydentävinä. Metsähakkeen käytön kasvu syrjäyttää turpeen käyttöä, koska päästökaupan oloissa puuperäisten polttoaineiden kilpailukyky turpeeseen paraneee.

Turpeen kilpailuasema ja sen käytön osuus pysyy suhteellisen korkeana sähkön ja lämmön yhteistuotannossa sekä lämmön erillistuotannossa. Lauhdevoimaa tuotannossa turpeen käytön vähenneminen voi olla hyvinkin mittava. Vähennys johtuu siitä, että lauhdevoimaa tarvitaan Kioton sitoumuksaudella ja sen jälkeen Suomen sähkötaseessa WAM-skenaarissa hyvin vähän. Vaikka turve olisikin lauhdevoimaa tuotannossa kilpailukykyinen hiilen kanssa ei se turpeen käytön määrään kovin paljon vaikuta. Lauhdevoiman tarve voi pohjoismaisilla markkinoilla olla kuitenkin suurempi kuin Suomessa, jolloin turvelauhdevoiman tuotanto voisi olla WAM-skenaarion arviota selvästikin suurempi.

![Kuva 12. Kotimaisten polttoaineiden käyttö sähkön ja lämmön yhteistuotannossa sekä lämmön erillistuotannossa WAM-skenaarissa, PJ (pl. jäteliemien käyttö)](image)

Uusiutuvien energialähteiden kehitys

energiamuotojen osuus uusiutuvien energialähteiden kokonaiskäytöstä oli 94 prosenttia vuonna 2003.

Niiden uusiutuvien energialähteiden käyttö, joihin ilmasto- ja energiastrategian mukaisilla toimilla voidaan vaikuttaa kasvavaa hyvin nopeasti. Tällaisiiin uusiutuvii energialähteisiin kuuluvat metsähake, tuulivoima, peltobiomassat, kierrätyspolttoaineet, biokaasut sekä maaperän lämmön hyödyntäminen. WAM-skenaariossa näiden energiamuotojen käyttö moninkertaistuu ja kasvuu huomattavasti ilmasto- ja energiastrategian mukaisilla toimilla voidaan vaikuttaa kasvavaan hyvin nopeasti. Tällaisiin uusiutuvien energiamuotojen energialähteen käytön ja tuotannon kasvuvauhtienä eri energialähteiden tuotannon ja käytön kehitys näkyy alla olevassa taulukossa.

\[\text{Taulukko 60.} \quad \text{Uusiutuvien energialähteiden käytön osuudet vuonna 2003 ja käytön ja tuotannon keskimääräinen kasvuvauhti vuosina 2003 – 2015, %-osuudet ja vuosikasvu %/v} \]

<table>
<thead>
<tr>
<th>Osuudet vuonna 2003, %</th>
<th>Käytön/tuotannon muutos vuosina 2003-2015, %/v</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesivoima</td>
<td>13,6</td>
</tr>
<tr>
<td>Kuori ja muu jätepuu</td>
<td>23,5</td>
</tr>
<tr>
<td>Jäteliemet</td>
<td>42,6</td>
</tr>
<tr>
<td>Puun pienkäyttö</td>
<td>14,2</td>
</tr>
<tr>
<td>Kierrätyspolttoaine, biokaasu</td>
<td>1,4</td>
</tr>
<tr>
<td>Lämpöpumput</td>
<td>0,9</td>
</tr>
<tr>
<td>Metsähake</td>
<td>3,6</td>
</tr>
<tr>
<td>Ruokohelpi ja biopolttonesteet</td>
<td>0,2</td>
</tr>
<tr>
<td>Tuulivoima</td>
<td>0,1</td>
</tr>
<tr>
<td>Uusiutuvat yhteensä</td>
<td>100</td>
</tr>
</tbody>
</table>

5.6 **WAM-skenaarion kasvihuonekaasupäästöt**

WAM-skenaariossa niin kuin WM-skenaariossakin päästöt kasvavat vain päästökauppasektorillä.

Taulukko 61. Päästökauppasektorin päästöt sektoreittain WAM-skenaariossa vuosina 1990-2025, Mt ja %.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lauhdevoima</td>
<td>5,3</td>
<td>17,5</td>
<td>3,2</td>
<td>4,6</td>
<td>17</td>
<td>35</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>Kaukolämpö</td>
<td>11,1</td>
<td>13,9</td>
<td>13,2</td>
<td>15,2</td>
<td>35</td>
<td>28</td>
<td>36</td>
<td>38</td>
</tr>
<tr>
<td>Massa- ja paperi</td>
<td>5,5</td>
<td>5,3</td>
<td>4,8</td>
<td>4,5</td>
<td>17</td>
<td>11</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>Rauta- ja teräs</td>
<td>4,8</td>
<td>6,0</td>
<td>6,8</td>
<td>7,4</td>
<td>15</td>
<td>23</td>
<td>20</td>
<td>19</td>
</tr>
</tbody>
</table>

1) Kioton sitoumuskaudella keskimäärin WM-skenaarion mukaiset päästöt päästökauppasektorilla ovat 44,7 milj. tonnia ja WAM-skenaariossa 38 milj. tonnia.

Päästökauppasektorin osuus kokonaispäästöistä oli vuonna 1990 noin 45 prosenttia ja ei-päästökauppasektorin osuus 55 prosenttia. Suhde on kääntynyt toisinpäin ja päästökauppasektorin osuus kokonaispäästöistä kasvaa WAM-skenaarion mukaan myös jatkossa.

Taulukko 62. Ei-päästökauppasektorin päätöt ja päästöjen osuudet sektoreittain WAM-skenaariossa vuosina 1990-2025, Mt ja %.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂-päästöt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liikenne</td>
<td>12,0</td>
<td>12,5</td>
<td>12,7</td>
<td>12,2</td>
<td>31</td>
<td>35</td>
<td>37</td>
<td>39</td>
</tr>
<tr>
<td>Lämmitys</td>
<td>5,0</td>
<td>3,9</td>
<td>3,2</td>
<td>1,6</td>
<td>13</td>
<td>11</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Muut sektorit</td>
<td>6,5</td>
<td>5,9</td>
<td>6,0</td>
<td>6,1</td>
<td>17</td>
<td>16</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>Muut päätöt</td>
<td>15,4</td>
<td>13,7</td>
<td>12,7</td>
<td>11,8</td>
<td>40</td>
<td>38</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>Yhteensä</td>
<td>38,9</td>
<td>36,1</td>
<td>34,6</td>
<td>31,8</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

5.7 WAM-skenaarion herkkyystarkastelu

Päästöoikeuden hinta on tekijä, joka vaikuttaa olennaisesti energiasektoriin ja sitä kautta kasvihuonekaasupäästöihin päästökaupan oloissa. Päästöoikeuden hinta on myös tekijä, johon ei Suomessa tehtävillä toimilla voida vaikuttaa. WAM-skenaariossa on käytetty päästöoikeuden hinnalle yhtä tämän hetken arviota, mutta hinta voi vaihdella paljonkin riippuen tulevista päästörajoituksista ja markkinatilanteesta.

Taulukosta 59 nähdään päästöoikeuden hinnan nousun vaikuttavan sähkön kulutukseen huomattavasti. Samoin on nähtävissä, että sähkön lauhdetuotanto saa vääryää yhteistuotannon ja tuulivoiman fisiääntyessä. Päästöoikeuden hinnalla on myös selvä vaikutus sähkön tuontiin ja vientiin pohjoismaisilta sähkömarkkinoilta.
Taulukko 65. Sähkön hankinta ja kokonaiskulutus WAM-skenaariossa eri päästöoikeuden hinnoilla.

<table>
<thead>
<tr>
<th>Sähkön hankinta, TWh</th>
<th>2003</th>
<th>-10 € WAM</th>
<th>+10 € WAM</th>
<th>2025</th>
<th>-10 € WAM</th>
<th>+10 € WAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vesi- ja tuulivoima</td>
<td>9.6</td>
<td>13.9</td>
<td>14.1</td>
<td>16.2</td>
<td>16.9</td>
<td>17.6</td>
</tr>
<tr>
<td>Yhteistuotanto</td>
<td>27.9</td>
<td>34.0</td>
<td>34.4</td>
<td>35.0</td>
<td>40.5</td>
<td>40.9</td>
</tr>
<tr>
<td>Lauhdetuotanto</td>
<td>21.0</td>
<td>5.4</td>
<td>5.1</td>
<td>4.7</td>
<td>9.3</td>
<td>6.6</td>
</tr>
<tr>
<td>Ydinvoima</td>
<td>21.8</td>
<td>31.1</td>
<td>31.1</td>
<td>31.1</td>
<td>34.6</td>
<td>34.6</td>
</tr>
<tr>
<td>Nettotoiminti</td>
<td>4.9</td>
<td>10.0</td>
<td>8.6</td>
<td>7.2</td>
<td>5.0</td>
<td>5.2</td>
</tr>
<tr>
<td>Kokonaiskulutus</td>
<td>85.2</td>
<td>94.4</td>
<td>93.4</td>
<td>92.3</td>
<td>105.6</td>
<td>104.2</td>
</tr>
</tbody>
</table>

Taulukko 66. Hiilidioksidipäästöt päästökauppa- ja ei-päästökauppasektorilla eri päästöoikeuden hinnoilla.

<table>
<thead>
<tr>
<th>Hiilidioksidipäästöt, Mt</th>
<th>2003</th>
<th>-10 € WAM</th>
<th>+10 € WAM</th>
<th>2025</th>
<th>-10 € WAM</th>
<th>+10 € WAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Päästökauppasektori</td>
<td>49.4</td>
<td>38.0</td>
<td>36.5</td>
<td>34.9</td>
<td>43.8</td>
<td>40.2</td>
</tr>
<tr>
<td>Teollisuuden prosessipäästöt</td>
<td>11.4</td>
<td>13.9</td>
<td>13.9</td>
<td>13.9</td>
<td>15.1</td>
<td>15.0</td>
</tr>
<tr>
<td>Teollisuuden energiantuotanto</td>
<td>6.6</td>
<td>6.5</td>
<td>5.8</td>
<td>5.0</td>
<td>6.1</td>
<td>5.4</td>
</tr>
<tr>
<td>Kaukolämpö</td>
<td>13.9</td>
<td>13.7</td>
<td>13.2</td>
<td>12.7</td>
<td>15.5</td>
<td>14.9</td>
</tr>
<tr>
<td>Lauhde</td>
<td>17.5</td>
<td>3.9</td>
<td>3.7</td>
<td>3.3</td>
<td>7.2</td>
<td>4.9</td>
</tr>
<tr>
<td>Ei-päästökauppasektori</td>
<td>22.4</td>
<td>21.9</td>
<td>21.9</td>
<td>21.8</td>
<td>19.9</td>
<td>19.8</td>
</tr>
<tr>
<td>Yhteensä</td>
<td>71.8</td>
<td>59.9</td>
<td>58.4</td>
<td>56.7</td>
<td>63.7</td>
<td>60.0</td>
</tr>
</tbody>
</table>

Muut biopolttoaineet ja kierrätyspolttoaineet on tarkasteltu erikseen ja niiden osalta päästöoikeuden hinnan vaikutusta ei ole suoraan voitu määrittää. Arvio näiden polttoaineiden käytöstä perustuu teknisiin potentiaaleihin ja alakohtaisiin selvityksiin. Näiden polttoaineiden käyttöön vaikuttavat paljon muut poliittiset toimet kuin päästökauppa.
Taulukko 67. Kotimaisten energialähteiden käyttö eri päästöoikeuden hinnoilla

<table>
<thead>
<tr>
<th>Kotimaiset energialähteet, PJ</th>
<th>2003 -10 €</th>
<th>WAM</th>
<th>+10 €</th>
<th>2010 -10 €</th>
<th>WAM</th>
<th>+10 €</th>
<th>2025 -10 €</th>
<th>WAM</th>
<th>+10 €</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turve</td>
<td>98,4</td>
<td>71,0</td>
<td>56,3</td>
<td>42,6</td>
<td>71,8</td>
<td>54,7</td>
<td>38,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jäteliimet</td>
<td>147,0</td>
<td>161,3</td>
<td>161,3</td>
<td>176,7</td>
<td>176,7</td>
<td>176,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metsähake</td>
<td>12,3</td>
<td>29,2</td>
<td>39,6</td>
<td>50,0</td>
<td>35,3</td>
<td>46,3</td>
<td>57,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teollisuuden tähdepuu</td>
<td>81,0</td>
<td>76,8</td>
<td>76,8</td>
<td>74,5</td>
<td>74,2</td>
<td>74,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puun pienkäyttö</td>
<td>48,9</td>
<td>50,4</td>
<td>50,6</td>
<td>50,8</td>
<td>54,1</td>
<td>55,7</td>
<td>57,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muut biopolttoaineet</td>
<td>0,6</td>
<td>6,0</td>
<td>6,0</td>
<td>8,8</td>
<td>8,8</td>
<td>8,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kierrätyspolttoaineet</td>
<td>10,2</td>
<td>15,2</td>
<td>15,2</td>
<td>21,0</td>
<td>20,8</td>
<td>20,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vesi, tuuli ja maalämpö</td>
<td>39,3</td>
<td>57,1</td>
<td>57,9</td>
<td>73,3</td>
<td>75,9</td>
<td>78,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yhteensä</td>
<td>437,7</td>
<td>467,0</td>
<td>463,7</td>
<td>461,2</td>
<td>515,5</td>
<td>513,1</td>
<td>511,8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kaiken kaikkiaan päästöoikeuden hinalla tulee olemaan merkittävä vaikutus energian hankinnan rakenteeseen ja sitä kautta hiilidioksidipäästöihin.
6 Vaikutusarviot

6.1 Arvioiden lähtökohdat

Ilmasto- ja energiastrategian taustaksi on teetetty useita tutkimuksia ja selvityksiä, joissa on arvioitu perinteisten energiapolitiikan toimien ja keskeisen uuden politiikkainstrumentin, EU:n päästökaupan, yhteisvaikutuksia. Tässä luvussa raportoidaan johtopäätöksiä kahdesta tutkimuksesta, joissa arvioitiin strategian eräiden keskeisten seikkojen vaikutusta energiatalouteen ja kansantalouteen. Energiataloudelliset vaikutusarviot tehtiin VTT:n energiatalouden mallijärjestelmillä ja kansantaloudelliset arviot Valtion taloudellisessa tutkimuskeskuksessa (VATT). Keskeisimpiä kysymyksiä, joita selvitettiin olivat:

a) Kioton sitoumuskaudella (2008 – 2012)

- Mikä olisi kustannustehokas tapa jakaa käytettävissä olevat sallitut päästömäärät (AAU) Kioton sitoumuskaudella vuosina 2008 – 2012 päästökauppasektorin ja sen ulkopuolisten toimijoiden kesken?
- Mitä voidaan sanoa päästöoikeuksien ja Kioton sitoumuskaudella päästökauppan kuuluvien sektoreiden välillä?
- Minkälaisia kustannuksia strategia aiheuttaa vuosina 2008 – 2012?

b) Kioton sitoumuskauden jälkeen (2013 – 2025)

- Kioton sitoumuskauden jälkeisiä tavoitteita arvioitaessa tarvitaan tietoa vaihtoehtois- ten sitoumusmallien vaikutuksista energiatalouteen ja kansantalouteen. Minkälaisia kansantaloudellisia ja energiataloudellisia vaikutuksia erilaiset sitoumusmallit vuosina 2013 – 2025 aiheuttavat?

Lisäksi arvioitiin tuovatko valtioon Kioton mekanismeilla mahdollisesti hankkimat sallitut päästömäärät kansantaloudellista hyötyä.

Kioton sopimuskaudelle sitoumusvelvoitteet on määretty ja sen aiheuttamia vaikutuksia voidaan arvioida. Sen sijaan Kioton sitoumuskauden jälkeiselle vuosille 2013 –2025 ei ole päätetty päästöjä sitoumusvelvoitteita, jonka vuoksi tutkittavaksi valittiin neljä erilaista sitoumusvaihtoehtoa. Tarkasteluun valittiin vaihtoehdot, joissa sitoumusvelvoite kehittyisi ajallisesti suoraviivaisesti siten että velvoite olisi:

1) Yhtä suuri kuin Kioton velvoite koko tarkasteluperiodin ajan eli 70,5 milj. tonnia hiilidioksidi-ekvivalenttia vuosittain.

2) 10 prosenttia vähemmän kuin Kioton velvoite eli 63,4 milj. tonnia hiilidioksidiekvivalenttia vuonna 2025.

3) 20 prosenttia vähemmän kuin Kioton velvoite eli 56,3 milj. tonnia hiilidioksidiekvivalenttia vuonna 2025.
4) 30 prosenttia vähemmän kuin Kioton velvoite eli 49,3 milj. tonnia hiilidioksidiekvivalenttia vuonna 2025.

Nykyiset politiikkatoimet, kuten energiavero- ja tukijärjestelmät pidettiin arvioissa ennallaan. EU:n päästökauppa nousi uudeksi keskeiseksi politiikkainstrumentiksi. Arviot tehtiin kahdella päästöoikeuden hintavaihtoehdolla: 10 €/tCO₂ ja 20 €/tCO₂.

6.2 Energiajärjestelmän kustannukset

6.2.1 Välittömät nettomääriäiset kokonaiskustannukset

\[
\begin{array}{c}
\text{€/tCO}_2 \\
\text{Päästöjen vähennemä t/CO}_2
\end{array}
\]

Kuva 14. Esimerkkikuva välittömiä kustannusten syntymästä
Päästöoikeuden hinta säätälee keskeisesti päästövelvoitteesta aiheutuvien toimenpiteiden jakautumista kotimaaisiin toimiin ja päästökaupan käyttöön. Mitä korkeampi päästöoikeuden hinta sitä enemmän tehdään kotimaisia toimenpiteitä. Alhaisilla päästöoikeuden hintoilla puolestaan kannattaa hankkia markkinoilta päästöoikeuksia päästöjen katteeksi.

Arvio Kioton sitoumuskauden välittömästä kustannuksista näkyv u vassa 15.

![Kuva 15. Arvio päästövelvoitteen aiheuttamista välittömästä kustannuksista päästöoikeuden hintoilla 10 ja 20 €/tCO₂](image)

Kuva 15. Arvio päästövelvoitteen aiheuttamista välittömästä kustannuksista päästöoikeuden hintoilla 10 ja 20 €/tCO₂

Korkeammalla päästöoikeuden hinnalla noin kolme neljäsosaa edellä mainitusta 10 milj. tonnin vajeesta katetettaihin kotimaaisiin päästöjen vähennystoihin ja neljännes hankkimalla päästöoikeuksia päästökaupan välityksellä. Alemmalla päästöoikeuden hinnalla sen sijaan vain vajaat puolet vajeesta hoidettaisiin kotimaaisiin toimenpitein. Päästöoikeuden hinnalla 10 €/tCO₂ päästöoikeuksia hankittaisiin markkinoilta 5,5 milj. tonnia ja 20 €/tCO₂ hinnalla 2,5 milj. tonnia. Päästövelvoitteesta aiheutuvat välittömät kustannukset olisivat alemmalta päästöoikeuden hinnalla Kioton kaudella noin 170 milj. euroa vuodessa ja korkeammalla päästöoikeuden hinnalla hieman vajaat 250 milj. euroa vuodessa.

Kioton kauden jälkeen tulevien kustannusten suuruus riippuu päästövelvoitteiden tiukkuudesta ja päästöoikeuden hinnasta. Päästövelvoitteen kriistyminen ei juurikaan vaikuta kotimaisten toimenpiteiden määrään, jos päästöoikeuden hinta pysyy muutumattomana. Saman voi havaita
myös kuvasta 14, sillä päästövelvoitteen siirtäminen kohdan B oikealle puolelle lisää vain päästöoikeuksien hankintaa markkinoilta. Päästöoikeuden hinnan muuttuminen sen sijaan vaikuttaa kotimaisten toimien määrään. Kotimaisella tavoitteella mitoituksella päästöoikeuden hintaan ei voida vaikuttaa, mutta EU-tasolla päästövelvoitteen ja päästöoikeuden hinnan välille synty keskinäinen riippuvuus. Kun EU:n päästövelvoite kiristyy, vaikuttaa se samalla päästöoikeuden hintaan korottavasti ja nostaa myös Suomen päästövelvoitteen hoidon kustannuksia.

Kuva 16. Vaihtoehtoisista päästösitoumuksista aiheutuvat välittömät kustannukset päästöoikeuden hinnalla 10 €/tCO2.
6.2.2 Väliittömät kustannukset sektoreittain

Tarkastelun pitämiseksi mahdollisemman yksinkertaisena laskelmissa ei kuvata minimikustannusten tilannetta, vaan päästökauppasektorin yritysten oletetaan hoitavan päästövelvoitteen saavutamalla. Laskelman kustannukset syntyvät päästökauppasektorin aloille siten päästööikeuksien hankinnasta, sähkön hinnan noususta ja sähköverotuksen poistosta. Päästökauppaan kuulumattomille aloille kustannuksia on päästöoikeuksien hankinnasta syntyvät. Tässä sahkon tuottajille, jotka toimivat sähkön asiakkaina markkinahintaan sähkön hinnan nousun hyödyksi lisätuototoja. Myös strategian linjausten mukainen sähköveroluokan II veron alennus parantaa tään veroluokkaan kuuluvien toimijoiden asemaa. Veron alennuksen suuruudeksi on laskelmassa oletettu 50 %.

Teollisuuden itselleen tuottaman sähkön ja osakkuuslaitoksistaan hankitun sähkön osalta on laskelmassa huomioitu vain päästööikeuksien hankinnasta syntyvät kustannukset. Osakkuuslaitosten päästööikeuksien tarve on arvioitu erillisen sähkön tuotannon keskimääräisellä päästökerroimella. Massan ja paperin tuotannossa edellä mainitut hankintalähteet ovat merkittäviä. Laskelmassa huomioitu vain päästööikeuksien hankinnasta syntyvät kustannukset. Osakkuuslaitosten

\[2010 \quad 2015 \quad 2020 \quad 2025 \]

\[-30 \% \quad -20 \% \quad -10 \% \quad 0 \% \]

Kuva 17. Vaihtoehtoisista päästösitoumuksista aiheutuvat välittömät kustannukset päästöoikeuden hinnalla 20 €/tCO\(_2\).

Strategian linjausten mukaisten sähköverotuikien poistuminen metsäteollisuuden jäteelimässä, kuorelta sekä purulta merkitsisi alalle noin 27 milj. euron vuosittaisen tuen poistumista. Terästeollisuuden kohdalla koksamo- ja masuunikaasujen sähköverotuen poistuminen merkitsisi noin kolmen miljoonan euron vuosittaita menetystä.

Päästöoikeuksien ostokset aiheuttavat lisäkustannukset siten taulukon 62 kuvaamalla tavalla.

Taulukko 68. Esimerkkilaskelma strategian aiheuttamista lisäkustannuksista, milj. euroa.

<table>
<thead>
<tr>
<th></th>
<th>Sähkön hinnan nousu</th>
<th>Päästöoikeuksien osto</th>
<th>Osuussähkön hinnan nousu</th>
<th>Sähköverotuksen poistuminen</th>
<th>Yhteensä</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teollisuus</td>
<td>368</td>
<td>0</td>
<td>35</td>
<td>30</td>
<td>433</td>
</tr>
<tr>
<td>- Massa ja paperi</td>
<td>45</td>
<td>0</td>
<td>35</td>
<td>27</td>
<td>107</td>
</tr>
<tr>
<td>- Terästeollisuus</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>48</td>
</tr>
<tr>
<td>- Öljynjalostus</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>- Mineraalit</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>- Muu teollisuus</td>
<td>260</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>260</td>
</tr>
<tr>
<td>Kaukolämpöala</td>
<td>0</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>Erillinen sähköl</td>
<td>0</td>
<td>105</td>
<td>0</td>
<td>0</td>
<td>105</td>
</tr>
<tr>
<td>Palvelut</td>
<td>220</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>220</td>
</tr>
<tr>
<td>Muu tuotanto</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>Kotitaloude</td>
<td>340</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>340</td>
</tr>
<tr>
<td>Sähkön tuonti</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Yhteensä</td>
<td>950</td>
<td>165</td>
<td>35</td>
<td>30</td>
<td>1180</td>
</tr>
</tbody>
</table>

Teollisuudelle aiheutuvat lisäkustannukset ovat Kioton kaudella keskimäärin vuodessa noin 430 milj. euroa, josta massa- ja paperiteollisuuden osuus on runsaat 100 milj. euroa. Metsäteollisuut-

Sähkön hinnan nousu lisää kuluttajien kustannuksia ja lisää tuloja niille tuottajille, jotka toimittavat sähkön asiakkailleen markkinahintaan. Helpotusta sähkön käyttäjien kustannuksiin syntyy puolustamalla strategiassa linjatun sähköveroluokan II alennuksesta. Laskelassa alennuksen suuruudeksi asetettiin 50 %. Veron alennuksen johdosta valtio menettäisi tuloja runsaan 110 milj. euron edestä vuosittain Kioton sitoumuskaudella. Sektorikohtaiset hyödyt näkyvät taulukossa s.

Taulukko 69. Laskelma strategian aiheuttamista hyödyistä sektoreittain Kioton kaudella keskimäärin vuodessa, milj. euroa.

<table>
<thead>
<tr>
<th>Sähkö-</th>
<th>Sähköveron alennus</th>
<th>Yhteensä</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teollisuus</td>
<td>0</td>
<td>113</td>
</tr>
<tr>
<td>- Massa ja paperi</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>- Terästeollisuus</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>- Öljynjalostus</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>- Mineraalit</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>- Muu teollisuus</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>KaukolämpöALA</td>
<td>280</td>
<td>0</td>
</tr>
<tr>
<td>Erillinen sähkö</td>
<td>540</td>
<td>0</td>
</tr>
<tr>
<td>Palvelut</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Muu tuotanto</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kotitaloudet</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sähkön tuonti</td>
<td>130</td>
<td>0</td>
</tr>
<tr>
<td>Yhteensä</td>
<td>950</td>
<td>113</td>
</tr>
</tbody>
</table>

Taulukko 70. Välittömät nettokustannukset yhteensä Kioton kaudella, milj. euroa.

<table>
<thead>
<tr>
<th>Sähkö-</th>
<th>Verotuksen</th>
<th>Teollisuuden</th>
<th>Kustannusten</th>
</tr>
</thead>
<tbody>
<tr>
<td>markkina-</td>
<td>poistuminen</td>
<td>sähköveron</td>
<td>kasvu, netto,</td>
</tr>
<tr>
<td>vaikutus</td>
<td></td>
<td>alennus</td>
<td>milj. €</td>
</tr>
<tr>
<td>Teollisuus</td>
<td>403</td>
<td>30</td>
<td>-113</td>
</tr>
<tr>
<td>- Massa ja paperi</td>
<td>80</td>
<td>27</td>
<td>-60</td>
</tr>
<tr>
<td>- Terästeollisuus</td>
<td>45</td>
<td>3</td>
<td>-8</td>
</tr>
<tr>
<td>- Öljynjalostus</td>
<td>3</td>
<td>0</td>
<td>-3</td>
</tr>
<tr>
<td>- Mineraalit</td>
<td>15</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>- Muu teollisuus</td>
<td>260</td>
<td>0</td>
<td>-40</td>
</tr>
<tr>
<td>KaukolämpöALA</td>
<td>-220</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Erillinen sähkö</td>
<td>-435</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Palvelut</td>
<td>220</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Muu tuotanto</td>
<td>22</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kotitaloudet</td>
<td>340</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sähkön tuonti</td>
<td>-130</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Yhteensä</td>
<td>200</td>
<td>30</td>
<td>-113</td>
</tr>
</tbody>
</table>
6.2.3 Sallittujen päästömäärrienallokoinnista

Taulukko 71. Vähennysvelvoiteen allokointi sektoreittain, Mt CO₂

<table>
<thead>
<tr>
<th>Vähennysvelvoite, Mt CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ei-päästökauppasektorit</td>
</tr>
<tr>
<td>Päästökauppasektorit, josta</td>
</tr>
<tr>
<td>- Teollisuus</td>
</tr>
<tr>
<td>- Kaukolämpösektorit</td>
</tr>
<tr>
<td>- Erillinen sähköntuotanto</td>
</tr>
<tr>
<td>Yhteensä</td>
</tr>
</tbody>
</table>

Päästökauppasektorin ulkopuolisilla aloilla päästöjen vähentäminen on tehtyjen selvitysten mukaan selvästi kalliimpaa kuin päästökauppasektorilla. Päästökauppasektorin sisällä mallilaskelmat siirtäisivät kustannustehokkuuden perusteella suurimman vastuun päästösitoumuksen hoidosta erilliselle sähköntuotannonelle.

Taulukko 72. Suomen sallittujen päästömäärrien kustannustehokas allokointi sektoreille VTT:n mukaan, Mt CO₂

<table>
<thead>
<tr>
<th>AAU:t sektoreittain Kioton kaudella, keskimäärin vuodessa, Mt CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ei-päästökauppasektorit</td>
</tr>
<tr>
<td>Päästökauppasektorit, josta</td>
</tr>
<tr>
<td>- Teollisuus</td>
</tr>
<tr>
<td>- Kaukolämpösektorit</td>
</tr>
<tr>
<td>- Erillinen sähköntuotanto</td>
</tr>
<tr>
<td>Yhteensä</td>
</tr>
</tbody>
</table>
6.3 Kansantaloudelliset vaikutukset

6.3.1 Vaikutukset Kioton sitoumun kaudella

Taulukkoon 73 on koottu päästövelvoitteesta aiheutuvat vaikutukset kansantalouteen eräiden keskeisimpien indikaattoreiden valossa. Vaikutukset kansantalouteen ovat sitä suuremmat mitä korkeampi on päästöoikeuden hinta EU:n päästökaupassa sekä päästövähennemien hankintakustannuksit Kioton mekanismeilla. Bruttokansantuote olisi Kioton kaudella joka vuosi 0,5 – 0,9 prosenttia alempi kuin ilman päästövelvoitetta. Yksityisen kulutuskysynnän kohdalla alennettaisi liukkavaa 1,2 – 2,2 prosenttia ja investoinneissa 0,1 – 0,3 prosenttia. Työllisyysten vaikutukset olisivat VATT:n arvioon mukaan lievästi negatiiviset.

Taulukko 73. Päästövelvoitteen vaikutukset kansantalouteen Kioton sitoumuksella vuosina 2008 - 2012. Muutos tilanteeseen, jossa velvoitetta ei olisi, %.

<table>
<thead>
<tr>
<th>Päästöoikeuden hinta</th>
<th>5 €/tCO₂</th>
<th>10 €/tCO₂</th>
<th>20 €/tCO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>BKT</td>
<td>-0,5</td>
<td>-0,6</td>
<td>-0,9</td>
</tr>
<tr>
<td>Yksityinen kulutus</td>
<td>-1,2</td>
<td>-1,4</td>
<td>-2,2</td>
</tr>
<tr>
<td>Investoinnit</td>
<td>-0,1</td>
<td>-0,1</td>
<td>-0,3</td>
</tr>
</tbody>
</table>

Strategian taustaksi tehdyissä selvityksissä kävi ilmi myös, että valtion osallistuminen päästövelvoitteen hoitoon Kioton mekanismeilla alentaa kansantalouden kustannuksia. Kioton sitoumuksella vaikutukset eivät vielä näy, mutta tulevat päästövelvoitteiden tiukentuessa selvästi esiin. Tulokset on esitetty alempana taulukossa 74.

6.3.2 Kioton sitoumuskauden jälkeen

EU-laajuinen tarkastelu

Kioton sitoumuskauden jälkeisellä ajalle ei ole vielä määritetty päästövelvoitteita ja muutenkin sopimusarkkitehtuurin on vielä hyvin epäselvä. Tämän vuoksi joudutaan tekemään lukuisa määrä lähtööletuksia, kun Kioton pöytäkirjan jälkeisten vuosien vaihtoehtoisten sitoumusvelvoitteiden
vaikutuksia lähdeetään arvioimaan. Tulokset ovat luonnollisesti kiinteästi sidoksissa tehtyihin oletuksiin.

Taulukko 74. Sitoumusvelvoitteiden ja perusskenaariojen päästöt välinen ero, %. Sitoumusvelvoitteiden suhteessa perusskenaario on perusskenaarioen päästöt välinen ero, %. Sitoumusvelvoitteiden suhteessa perusskenaario on sitoumusvelvoitteiden suhteessa perusskenaarioen päästöt välinen ero, %. Sitoumusvelvoitteiden suhteessa perusskenaario on sitoumusvelvoitteiden suhteessa perusskenaarioen päästöt välinen ero, %. Sitoumusvelvoitteiden suhteessa perusskenaario on sitoumusvelvoitteiden suhteessa perusskenaarioen päästöt välinen ero, %.

<table>
<thead>
<tr>
<th>Sitoumusvelvoite</th>
<th>Kioton tasosta</th>
<th>-0%</th>
<th>-10%</th>
<th>-20%</th>
<th>-30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suomi</td>
<td>-18</td>
<td>-26</td>
<td>-34</td>
<td>-42</td>
<td></td>
</tr>
<tr>
<td>Ruotsi</td>
<td>-19</td>
<td>-27</td>
<td>-35</td>
<td>-43</td>
<td></td>
</tr>
<tr>
<td>Tanska</td>
<td>-10</td>
<td>-19</td>
<td>-28</td>
<td>-37</td>
<td></td>
</tr>
<tr>
<td>Saksa</td>
<td>-12</td>
<td>-20</td>
<td>-29</td>
<td>-38</td>
<td></td>
</tr>
<tr>
<td>Iso-Britannia</td>
<td>-16</td>
<td>-24</td>
<td>-33</td>
<td>-41</td>
<td></td>
</tr>
<tr>
<td>Vanhat jäsenmaat</td>
<td>-23</td>
<td>-31</td>
<td>-38</td>
<td>-46</td>
<td></td>
</tr>
<tr>
<td>Uudet jäsenmaat</td>
<td>28</td>
<td>15</td>
<td>2</td>
<td>-11</td>
<td></td>
</tr>
</tbody>
</table>

Oletus EU-maiden sitoutumisesta yksipuolisiin päästöjen vähennystoimiin johtaa jäsenmaiten kilpailuluvuyn heikkonemiseen niihin mahlin verrattuna, jotka eivät osallistu päästöjen vähentämiseen. EU-alueen vienti vähenee ja tuonnin kilpailukyky paranee. Voimakkaimmakin vaikutukset tuntuvat prosessiteollisuuden viennissä ja kotimarkkinoilla. Taulukossa 75 on esitetty vaikutusarviot toimialojen nettoventtiini vuonna 2025 aiemmin mainituilla sitoumusvelvoitteilla.
Taulukko 75. EU-maiden nettoviennin muutos vuonna 2025, milj. dollaria (vuoden 1997-hinnoin)

<table>
<thead>
<tr>
<th>Sitoumun velvoite Kioton tasosta</th>
<th>-0%</th>
<th>-10%</th>
<th>-20%</th>
<th>-30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prosessiteollisuus</td>
<td>-110</td>
<td>-1870</td>
<td>-3280</td>
<td>-5580</td>
</tr>
<tr>
<td>Muu teollisuus</td>
<td>0</td>
<td>-37</td>
<td>0</td>
<td>-990</td>
</tr>
<tr>
<td>Palvelut</td>
<td>20</td>
<td>130</td>
<td>100</td>
<td>-940</td>
</tr>
</tbody>
</table>

Prosessiteollisuuuden nettovienti kattaa metallien valmistuksen, massa- ja paperiteollisuuden, kemiantoollisuuden sekä mineraliteollisuuden toimialat. Päästövelvoitteiden yksipuolinen kiristäminen vähentäisi näiden toimialojen vientiä yli 4 miljardilla eurolla.

Euroopan yhteisön jäsenmaiden kansantuotetta päästösitoumukset alentaisivat taulukon 7.4 mukaisesti 0,1 – 0,8 prosenttia vaihtoehdosta, jossa päästösitoumuksia ei olisi.

Taulukko 76. Vaikutukset EU-alueen bruttokansantuotteeseen, %

<table>
<thead>
<tr>
<th>Sitoumun velvoite Kioton tasosta</th>
<th>-0%</th>
<th>-10%</th>
<th>-20%</th>
<th>-30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruttokansantuote</td>
<td>-0,1</td>
<td>-0,2</td>
<td>-0,5</td>
<td>-0,8</td>
</tr>
</tbody>
</table>

Vaikutukset Suomen kansantalouteen

EU-laajuisia tuloksia on käytetty hyväksi arvioitaessa eri sitoumusvaihtoehtojen vaikutuksia Suomen kansantalouteen. Tarkasteluhikon on nyt kuitenkin VATT:n Suomen kansantalout- ta kuvaava mallijärjestelmä.

EU:n laajuisen päästösitoumuksen tiukkuuden ja päästöoikeuden hinnan välillä on yhteys, joka pitäisi tuntea vaikutuslaskelmien tekemiseksi. Käytettävissä ei kuitenkaan ollut kunnollisia arvioita päästöoikeuden hinnan reagoinnista päästötavoitteisiin, jonka vuoksi VATT:n selvityksessä oletettiin tarkastelussa olleille tavoitetasoille niitä vastaava päästöoikeuden hinta. Tavoitetasoja vastaavat hinnat olivat vuoden 2025 tilanteessa:
- 10 % Kioton tasosta: 10 €/tCO₂
- 20 % Kioton tasosta: 15 €/tCO₂
- 30 % Kioton tasosta: 20 €/tCO₂

Näiden päästöoikeuksien ja sitoumustasojen vaikutukset kansantuotteeseen, kulutukseen, investointeihin ja työllisyteen vuonna 2025 on esitetty kuvassa 18. Laskelmissa ei ole otettu huomioon valtion mahdollisesti Kioton mekaniimeilla hankkimia sallittuja päästömääriä.

Kuva 18. Päästösitoumusten ja päästöoikeuden hinnan yhteisvaikutus kansantalouteen vuonna 2025, muutos WM-skenaariosta, %

VATT:n selvitysten perusteella näyttäisi siltä, että joustomekanismien käytön hinnalla, erityisesti EU:n päästöoikeuden hinnalla, olisi jopa suurempi vaikutus kansantalouden suureisiin kuin tarkastuilla päästösitoumustavoitteilla. Niin päästöoikeuden hinnan nousu kuin päästösitoumusten tiukentuminenkin alentavat kansantalouden aktiviteettia, mutta ensiksi mainitulla näyttäisi olevan tarkastelluista vaihtoehtoista suurempi paino.

Valtion osallistuminen Kioton mekaniimeen käyttöön

EU:n komission teettämien arvioiden mukaan joustomekanismien köyttö laskisi päästöoikeuden hintaa koko EU:n tasolla päästövähennemää yhteisön päästöoikeuksien markkinoille. Tämä alentaisi päästöjen vähentämisen kustannuksia koko EU-alueella.

Kioton sitoumuskaudella valtion osallistumisen kansantalousellinen etu ei vielä tullut selvästi näkyviin, koska mahdollisuudet mekanismien käyttöön olisivat tehdyin oletuksen mukaan enimmillään vain runsaat 5 milj. tonnia. Päästövelvoitteen kasvaessa vaikutukset tulevat selvästi esille. Taulukossa 77 on esitetty vaikutuksia bruttokansantuotteeseen, kulutukseen, investointeihin ja työllisyyteen, kun vaihtoehtoina ovat valtion osallistuminen Kioton mekanismien käyttöön ja osallistumattomuus.

Taulukko 77. Eri sitoumusvelvoitteiden vaikutus kansantalouteen, kun valtion osallistuminen Kioton mekanismeihin otetaan huomioon, muutos WM-skenaariosta, %

<table>
<thead>
<tr>
<th>Valtio ei osallistu Kioton mekanismien käyttöön</th>
<th>Valtio osallistuu Kioton mekanismien käyttöön</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 € /-10%</td>
<td>15 €/-20%</td>
</tr>
<tr>
<td>BKT</td>
<td>-1,1</td>
</tr>
<tr>
<td>Kulutus</td>
<td>-1,9</td>
</tr>
<tr>
<td>Investointit</td>
<td>-2,7</td>
</tr>
<tr>
<td>Työllisyys</td>
<td>-0,2</td>
</tr>
</tbody>
</table>

Valtion osallistuminen Kioton mekanismien käyttöön alentaa merkittävästi kansantalouden kus-tannuksia. Selvityksessä ei kuitenkaan kyetetty arvioimaan mihin määrään saakka valtion osallistuminen olisi kokonaistalousellisesti edullista.

Toimialakohtaisesti valtion osallistuminen Kioton mekanismeihin näkyy tuotannon osalta alla olevassa taulukossa.

Taulukko 78. Eri sitoumusvelvoitteiden vaikutus eri toimialojen tuotantoon vuonna 2025, kun valtion osallistuminen Kioton mekanismeihin otetaan huomioon, muutos WM-skenaariosta, %

<table>
<thead>
<tr>
<th>Valtio ei osallistu mekanismeihin</th>
<th>Valtio osallistuu mekanismeihin</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 € /10%</td>
<td>15 €/ 20 %</td>
</tr>
<tr>
<td>PKS- teollisuus</td>
<td>-1,0</td>
</tr>
<tr>
<td>-Rauta ja teräsi</td>
<td>-3,7</td>
</tr>
<tr>
<td>-Massa&papperi</td>
<td>0,0</td>
</tr>
<tr>
<td>-Öljynjalostus</td>
<td>-3,4</td>
</tr>
<tr>
<td>EPKS-teollisuus</td>
<td>-0,5</td>
</tr>
<tr>
<td>Palvelutoimialat</td>
<td>-1,0</td>
</tr>
</tbody>
</table>

VATT:n laskelmien mukaan valtion osallistuminen Kioton mekanismeilla päästövelvoitteen hoitoon vaikuttaa pääsääntöisesti myönteisesti niin päästökauppasektorin kuin eipäästökauppasektorinkin toimialojen tuotantomahdollisuuksiin.

6.4 Aluetalousellisia vaikutuksia

Ilmastostrategian näkyvimmät aluetalouseliset vaikutukset ilmenevät päästökaupan aiheuttaan polttoaineiden välisen kilpailukyvyn muutosten kautta. Päästökauppa parantaa puun kilpai-

Alueellisesti päästökauppa vaikuttaa negatiivisimmin Etelä-, Keski- ja Pohjois-Pohjanmaalla, joissa vähentyneet turvelauhteen käyttöä ei pystytä puulla korvamaan. Positiivisimmat työllisyysvaikutukset jakaantuvat tasaisemmin ollen suurimmilla Pohjois-Savossa ja Satakunnassa.

Työllisyysten osalta päästökaupan vaikutus heijastuu voimakkaimmin turvetuotannon ja kuljettujen työllisyteen. Vastaavasti puupolttoaineen käytön kasvu lisää työpaikkoja. Tehtyjen selvitysten mukaan päästöoikeudenhinnalla 20€/tCO₂ turven tuotannon ja kuljetuksien työllisyys vähenee noin 1170 henkilötyövuotetta, josta vaikutus suorin työpaikkoihin on noin 750 henkilötyövuotetta. Kun turve korvautuu metsähakkeella, syntyy käytännössä vastaava määrä työpaikkoja ja metsähakkeen toimituksiin. Puupolttoaineiden lisäkäytön työllisyysvaikutukset ovat noin 1090 henkilötyövuotetta (tästä suorat vaikutukset n. 725 htv), jolloin kotimaisten polttoaineiden työllistävyys jää päästökauppatilanteessa lievästi negatiiviseksi (80 htv).

Polttoaineketjun kohdistuvien työllisyysvaikutusten lisäksi päästökaupalla on myös muita alueellisia työllisyysvaikutuksia, joiden suuruutta on tässä vaiheessa vaikea arvioida. Päästökauppa, ilmastokysymysten ja päästöjen hallinta sekä uusiutuvan energian lisääntyvä käyttö vaikuttavat positiivisesti laite- ja komponenttiomittajien ja eri palvelun tarjoajien työllisyyteen. Myös tutkimus- ja kehitystoiminnan odotetaan kasvavan.